pco. dicam C1

intensified 16 bit sCMOS camera
intensified
sCMOS technology
2048×2048 pixel

106 fps
@ full resolution

10G fiber optic data interface
exposure time 4 ns
with 25 mm intensifier
double image mode
with 300 ns interframing time

After more than 30 years of experience with image intensified cameras, we are proud to introduce the new pco.dicam C1 to you. The pco.dicam C1 is the first intensified camera system which exploits the full performance inherent to scientific CMOS sensor technology.

It is the optical coupling of 25 mm high resolution image intensifiers with an outstanding high efficiency tandem lens system to a 16 bit 4 MPixel sCMOS sensor which makes the camera so unique. The 10G fiber optic based data interface (CLHS FOL) guarantees you uncompressed and robust 16 bit data transfer of 106 full frames per second via optical fiber over virtually any distance.

features \& benefits

106 fps @ full 4.2 MPixel resolution	high frame rates at high resolution for imaging of dynamic process
$\begin{aligned} & >7000 \mathrm{fps} \text { @ } \\ & \text { reduced resolution } \end{aligned}$	kHz scan rates for spectroscopic applications
1.1 e - readout noise	lowest readout noise of any gated intensified camera system
16 bit digitization	taking advantage of the higher dynamic range possible from high-end image intensifiers
25 mm high resolution image intensifier	doubles the optical resolution of conventional 18 mm image intensifiers
optical coupling via ultra-speed tandem lens	outstanding image quality with high transmission efficiency and no artifacts
tandem lens with 0.53 : 1 image scaling	full 25 mm diameter of intensifier output is imaged (lossless) onto an sCMOS sensor
10G fiber optic based data interface	fiber optic interface virtually covers any distance without deploying additional interface converters or signal amplifiers with immunity to EMI
880 MByte/s image data rate	highest sustained image data rate of any intensified camera system on the market; no limitations for recording duration
double image mode with 300 ns interframing time	two consecutive full resolution images with a configurable minimum interframing time of 300 ns
4.2 MPixel sCMOS sensor	overcomes CCD limitations in terms of speed and sensitivity
enhanced extinction ratio gating	fast MCP gating for improved extinction ratio for the blue and uv part of the spectrum
additional optical trigger input	robust trigger transmission over long distance in EMC critical environments
lens remote controller (optional)	convenient remote lens control for camera systems inaccessible during an experiment
selected highly homogeneous image intensifiers	integrated best image intensifier quality available on the market
< 50 ns trigger to exposure start delay	ultra fast camera reaction to trigger event
4 ns gating with 25 mm intensifier	captures fast transient phenomena
external modulation of the photocathode sensitivity	multiple exposure with up to 3.3 MHz
VUV detection down to 110 nm with $\mathbf{S} 20$ photocathode and MgF_{2} input window	sealed camera front mounts to vacuum devices
extensive and highly precise IN/OUT signaling	allows for perfect synchronization in any experimental setup as timing master or slave
configurable delay in steps of 1 ns	flexible adaptation to synchronization needs

camera components overview

(1) image intensifier
(2) optical coupling lens system
(3) sCMOS image sensor

camera system
(5) 10G fiber optic based interface

Phone: (813) 984-0125

inamensified scmos

technical specifications

> image intensifier

type	HighRes micro channel plate (MCP) $6 \mu \mathrm{~m}$ channel
input window	synthetic silica, borosillicate, MgF_{2}
photocathode material	$\mathrm{S} 20, \mathrm{GaAs}, \mathrm{GaAsP}$ (others on request)
image intensifier pitch distance	$6 \mu \mathrm{~m}$
image intensifier MCP type	single stage low resistance MCP for high strip current
MCP operational modes	continuous gated for enhanced extinction ratio
image intensifier diameter	$25 \mathrm{~mm} \mathrm{(18} \mathrm{~mm} \mathrm{optional} \mathrm{on} \mathrm{request)}$
phosphor screen material	$\mathrm{P} 43, \mathrm{P} 46$
output window image intensifier system resolution	glass
shortest gating time	$450 \mathrm{lp} / \mathrm{mm}$ @ 5% MTF typical (depends on phosphor)

> image intensifier input window

Typical transmittance of image intensifier input window materials.

data courtesy of Hamamatsu Photonics

To make use of the good UV sensitivity of S20 photocathode material, the standard input window is made of synthetic silica for transmission down to 180 nm . For VUV detection down to $110 \mathrm{~nm}, \mathrm{MgF}_{2}$ has to be selected as input window.

GaAs and GaAsP photocathodes are deposited on borosilicate glass.

945 East $11^{\text {th }}$ Avenue Tampa, FL 33605

》 photocathode quantum efficiency

Spectral sensitivities of different photocathode materials: S20 (multialkali), GaAs, GaAsP

data courtesy of Hamamatsu Photonics

photocathode material	peak wavelength $[\mathrm{nm}]$	typical quantum efficiency at peak wavelength [\%]	dark counts $\left[\mathrm{s}^{-1} / \mathrm{cm}^{2}\right]$
S20 (multialkali)	250	20	1500
GaAs	650	30	30,000
GaAsP	500	55	10,000

data courtesy of Hamamatsu Photonics

> image intensifier phosphor

phosphor	phosphor decay (typ.) to..		peak emission	typical efficiency
	. $.10 \%$. $.1 \%$		100%
P 43	1 ms	4 ms	54 n	530 nm
P 46	$0.2-0.4 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$		

You can combine all photocathode materials with P43 or P46 phosphor. Whereas the P43 phosphor has a much brighter emission than the P46 phosphor, it has a rather long decay time, i.e. the time required until the phosphor emission fades out after the excitation by electron bombardement has been stopped. This decay time is therefore critical for fast image repetition rates, primarily in double image application or when operating the camera in spectroscopic mode with line rates in the kHz range.

technical specifications

> optical coupling lens system

"ultra-speed tandem lens" between image intensifier \& sCMOS

transmission efficiency	$>30 \%$
vignetting	$<3 \%$
resolution	$>601 \mathrm{p} / \mathrm{mm}$
scaling rates	$B=0.53$ for 25 mm intensifier

The projected image circle is completely covered by $2048 \times 20486.5 \mu \mathrm{~m}$ pixels of the sCMOS detector. There is no "waste" of valuable intensifier area. As a consequence, the four corners of the sCMOS sensor remain black. For a fast scan of just a few vertically centered lines - the camera module allows you to achieve more than 7000 fps for such a ROI - the full line length of 2048 pixels is available.

technical specifications

》 sCMOS image sensor

type of sensor	scientific CMOS (sCMOS)
resolution (h x v)	2048×2048 active pixel
pixel size (h x v)	$6.5 \mu \mathrm{~m} \times 6.5 \mu \mathrm{~m}$
sensor format / diagonal	$13.3 \mathrm{~mm} \times 13.3 \mathrm{~mm} / 18.8 \mathrm{~mm}$
shutter mode	single image
	double image
MTF $^{\mathbf{1}}$	$76.9 \mathrm{pp} / \mathrm{mm}$ (theoretical)
fullwell capacity $^{15,000 \mathrm{e}^{-} \text {for P46 phosphor }}$	
readout noise ${ }^{2}$	$30,000 \mathrm{e}^{-}$for P43 phosphor
dynamic range	$1.1 \mathrm{med} / 1.5 \mathrm{~ms} \mathrm{e}^{-}$single image
quantum efficiency	$2.2 \mathrm{med} / 2.5 \mathrm{~ms} \mathrm{e}^{-}$double image
spectral range	$13,600: 1(82.7 \mathrm{~dB})$ for P46 phosphor
dark current ${ }^{3}$	$27,200: 1(88.7 \mathrm{~dB})$ for P43 phosphor
DSNU	58% for P43 peak emission @ 545 nm
PRNU	57% for P46 peak emission @ 530 nm
anti blooming factor	$300 \mathrm{~nm} \ldots 1000 \mathrm{~nm}$

>> frame rate table ${ }^{4}$

	$\mathbf{C 1}$	$\mathbf{C 4}$	C8
2048×2048	106 fps	424 fps	848 fps
2048×1024	210 fps	840 fps	1680 fps
2048×512	414 fps	1656 fps	3312 fps
2048×256	807 fps	3228 fps	6456 fps
2048×128	1535 fps	6140 fps	$12,280 \mathrm{fps}$
2048×64	2795 fps	$11,180 \mathrm{fps}$	$22,360 \mathrm{fps}$
2048×32	4739 fps	$18,956 \mathrm{fps}$	$37,912 \mathrm{fps}$
2048×16	7266 fps	$29,064 \mathrm{fps}$	$58,128 \mathrm{fps}$
1920×1080		796 fps	1592 fps
1600×1200	199 fps	720 fps	1440 fps
1280×1024	210 fps	840 fps	1680 fps
640×480	441 fps	1764 fps	3528 fps
320×240	858 fps	3432 fps	6864 fps

1 Modulation transfer function.
2 The readout noise values are given as median (med) and root mean square (rms) values due to the different noise models, which can be used for evaluation. All values are raw data without any filtering
Measurements with dark current compensation.
4 Exposure time $<1 \mu \mathrm{~s}$

> perfect fit: phosphor emission vs. sCMOS quantum efficiency

This chart describes the spectral situation for the internal imaging of the image intensifiers phosphor output screen to the sCMOS sensor of the camera detector module. This imaging is done by the highly efficient tandem lens system.

Please note: The spectral sensitivity relevant for your experiment is solely determined by the QE curve of the photocathode material of the image intensifier (page 5).

technical specifications

> camera system

frame rate	$106 \mathrm{fps} @ 2048 \times 2048$ pixel $>7000 \mathrm{fps} @ 2048 \times 16$ pixel
dynamic range A/D	16 bit
pixel scan rate	286.0 MHz
binning horizontal	$\times 1, \times 2, \times 4$
binning vertical	$\times 1, \times 2, \times 4$
region of interest (ROI)	horizontal: steps of 4 pixels vertical: steps of 1 pixel
non-linearity	$<1 \%$
cooling method	$+7^{\circ} \mathrm{C}$ stabilized, 1 stage peltier with forced air (fan)
input signals	optical trigger (FOL), electrical trigger, arm input (TTL level, BNC connectors), gate disable (high-speed TTL input, BNC connectors)
output signals	gate/expos out monitor, user monitor output (TTL level, BNC connectors)
time stamp	in image (1 $\mu \mathrm{H}$ resolution)

> exposure modes

single image mode

exposure times	4, 10 ns fixed, 20 ns ... 250 ns (1 ns steps), $250 \mathrm{~ns} \ldots 1 \mathrm{~s}$ (10 ns steps)
delay times	$0 \mathrm{~ns} . . .250 \mathrm{~ns}$ (1 ns steps), $250 \mathrm{~ns} . . .1 \mathrm{~s}$ (10 ns steps)
maximum repetition... ...with external gating	200 kHz sustained, 3.3 MHz burst
insertion delay trigger input to exposure out trigger input to optical open	$\begin{aligned} & 19 \mathrm{~ns} \\ & 49 \mathrm{~ns} \end{aligned}$
jitter trigger input to exposure out trigger input to optical open	35 ps rms 150 ps rms

double image mode

exposure times	$20 \mathrm{~ns} \ldots 1 \mathrm{~ms}$ (in 10 ns steps)
delay settings	$0 \mathrm{~ns} \ldots 10 \mathrm{~ms}$ (in 10 ns steps)
interframing time	$300 \mathrm{~ns} \ldots 10 \mathrm{~ms}$ (in 10 ns steps)

[^0]
> general camera system

power supply	$18 \ldots 28 \mathrm{VDC}$
power consumption	$35 \ldots 40 \mathrm{~W}$
weight	7 kg
operating temperature	$+10^{\circ} \mathrm{C} \ldots+40^{\circ} \mathrm{C}$
operating humidity range	$10 \% \ldots 80 \%$ (non-condensing)
storage temperature range	$-10^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
optical mount	F -mount
optional: C-mount, Canon EF mount	
vacuum mount (optional)	sealed camera front attaches to vacuum equipment
lens remote controller (optional)	electronic control for Canon EF lenses
maximum cable length	$10 \mathrm{~km}(\mathrm{CLHS} \mathrm{FOL)}$
$\mathbf{C E} / \mathrm{FCC}$ certified	yes

technical specifications

>> camera interface

data transfer	Camera Link HS, FOL cable, frame grabber (Single F2,1X1, S10)
maximum cable length	10 km (CLHS FOL)
input signals	optical trigger (FOL), electrical trigger, arm input (TTL level, BNC connectors), gate disable (high-speed TTL input, BNC connectors)
output signals	gate/expos out monitor, user monitor output (TTL level, BNC connectors)

Luilikers

technical
 specifications

> lens remote controller

The optional Canon lens control adapter enables you to connect electronic EF and EF-S Canon lenses allowing to remote control focus and aperture of these lenses.

> dimensions

F-mount and C-mount lens changeable adapter. All dimensions are given in millimeter.

> camera view

》 applications

laser induced incandescence (LII) | shock wave physics | laser induced breakdown spectroscopy (LIBS) particle image velocimetry (PIV) | time resolved spectroscopy | plasmaphysics | laser induced fluorescence (LIF) ballistics | combustion

> software

With pco.camware you control all camera settings, the image acquisition, and the storage of your image data. The pco.sdk is the complementary software development kit. It includes dynamic link libraries for user customization and integration on Windows PC platforms. Drivers for popular third party software packages are also available for you.

All these items like pco.camware, pco.sdk, and third party drivers are free to download at www.pco.de

> third party integrations

customization

>> possible combinations

photocathode		input window
S20 selected	synthetic silica	P46
		P43
GaAs standard	borosilicate	P46
		P43
GaAs selected	borosilicate	P46
GaAsP standard	borosilicate	P43
GaAsP selected	borosilicate	P46
		P43

Image intensifiers with GaAs and GaAsP photocathode are available in two quality grades.

standard	quality specified for central $16 \mathrm{~mm} \times 16 \mathrm{~mm}$ square region corresponding to 1300×1300 pixel sCMOS sensor resolution
selected	quality specified for 24.9 mm diameter area corresponding to full 2048×2048 pixel
	sCMOS sensor resolution, extinction ratio 10 times higher than standard grade, image intensifiers with S20 photocathode exclusively come in selected grade quality.
	Contact our technical sales team for further details on the two quality grades

> select optical mount

F-mount
C-mount
Canon EF mount

》 select interface

type of fiber optic interface (CLHS FOL) module in camera and frame grabber

SM SFP+ up to 10 km
MM SFP+ up to 300 m
FOL cable length default: 10 m

pco europe

+49 9441200550
info@pco.de
pco.de

pco america

+18666784566
info@pco-tech.com
pco-tech.com

pco asia

+65 65497054
info@pco-imaging.com
pco-imaging.com

pco china

+86 51267634643
info@pco.cn
pco.cn

An Excelitas Technologies Brand

[^0]: 5 The high dynamic signal is simultaneously converted at high and low gain by two 11 bit A/D converters and the two 11 bit values are sophistically merged into one 16 bit value.

 945 East $11^{\text {th }}$ Avenue Tampa, FL 33605

