# X64 Xcelera-HS PX8™

User's Manual Edition 1.16



sensors | cameras | frame grabbers | processors | software | vision solutions





P/N: OC-X8HM-PUSR0 www.teledynedalsa.com

#### NOTICE

© 2013-2017 Teledyne DALSA, Inc. All rights reserved.

This document may not be reproduced nor transmitted in any form or by any means, either electronic or mechanical, without the express written permission of TELEDYNE DALSA. Every effort is made to ensure the information in this manual is accurate and reliable. Use of the products described herein is understood to be at the user's risk. TELEDYNE DALSA assumes no liability whatsoever for the use of the products detailed in this document and reserves the right to make changes in specifications at any time and without notice.

Microsoft® is a registered trademark; Windows®, Windows® 7, Windows® 8 and Windows® 10 are trademarks of Microsoft Corporation.

All other trademarks or intellectual property mentioned herein belongs to their respective owners.

Edition 1.16 released on June 9, 2017

Document Number: OC-X8HM-PUSR0 Printed in Canada

#### About Teledyne DALSA

Teledyne DALSA is an international high performance semiconductor and electronics company that designs, develops, manufactures, and markets digital imaging products and solutions, in addition to providing wafer foundry services.

Teledyne DALSA Digital Imaging offers the widest range of machine vision components in the world. From industry-leading image sensors through powerful and sophisticated cameras, frame grabbers, vision processors and software to easy-to-use vision appliances and custom vision modules.

# Contents

| OVERVIEW                                          | 7  |
|---------------------------------------------------|----|
| Product Part Numbers                              | 7  |
| ABOUT THE X64 XCELERA-HS PX8 FRAME GRABBER        |    |
| Series Key Features                               |    |
| User Programmable Configurations                  |    |
| ACUPlus: Acquisition Control Unit                 |    |
| DTE: Intelligent Data Transfer Engine             |    |
| Advanced Controls Overview                        |    |
| DEVELOPMENT SOFTWARE OVERVIEW                     |    |
| Sapera + + LT Library                             |    |
| Sapera Processing Library                         |    |
|                                                   |    |
| INSTALLING X64 XCELERA-HS PX8                     | 12 |
| WARNING! (GROUNDING INSTRUCTIONS)                 |    |
| INSTALLATION                                      |    |
| Sapera LT Library Installation                    |    |
| X64 Xcelera-HS PX8 Driver Installation            |    |
| X64 Xcelera-HS PX8 Firmware Loader                |    |
| Firmware Update: Automatic Mode                   |    |
| Firmware Update: Manual Mode                      |    |
| Executing the Firmware Loader from the Start Menu |    |
| REQUIREMENTS FOR A SILENT INSTALL.                |    |
| Silent Mode Installation                          |    |
| Creating a Response File                          |    |
| Running a Silent Mode Installation                |    |
| Silent Mode Uninstall                             |    |
| Creating a Response File                          |    |
| Running a Silent Mode Uninstall                   |    |
| Silent Mode Installation Return Code              |    |
| Installation Setup with CorAppLauncher.exe        | 17 |
| Custom Driver Installation using install.ini      |    |
| Creating the install.ini File                     |    |
| Run the Installation using install.ini            |    |
| Upgrading Sapera or Board Driver                  |    |
| Board Driver Upgrade Only                         |    |
| Upgrading both Sapera and Board Driver            |    |
| USING THE HS-LINK SERIAL CONTROL PORT             |    |
| COM Port Assignment                               |    |
| Setup Example with Windows HyperTerminal          |    |
| DISPLAYING X64 XCELERA-HS PX8 BOARD INFORMATION   |    |
| Device Manager – Board Viewer                     |    |
| CONFIGURING SAPERA                                |    |
| Viewing Installed Sapera Servers                  |    |
| Increasing Contiguous Memory for Sapera Resources |    |
| Host Computer Frame Buffer Memory Limitations     |    |
| Contiguous Memory for Sapera Messaging            |    |
|                                                   |    |
| TROUBLESHOOTING PROBLEMS                          | 24 |
| OVERVIEW                                          |    |
|                                                   |    |

|    | PROBLEM TYPE SUMMARY                                                       | . 24     |
|----|----------------------------------------------------------------------------|----------|
|    | First Step: Check the Status LED                                           | . 24     |
|    | Possible Installation Problems                                             | . 24     |
|    | Possible Functional Problems                                               | . 25     |
|    | TROUBLESHOOTING PROCEDURES                                                 |          |
|    | Checking for PCI Bus Conflicts                                             | . 25     |
|    | Windows Device Manager                                                     |          |
|    | GEN2 Slot Computer Issue                                                   |          |
|    | BSOD (blue screen) Following a Board Reset                                 |          |
|    | Sapera and Hardware Windows Drivers                                        |          |
|    | Recovering from a Firmware Update Error                                    |          |
|    | Driver Information via the Device Manager Program                          |          |
|    | Teledyne DALSA Log Viewer                                                  |          |
|    | Memory Requirements with Area Scan Acquisitions                            |          |
|    | Symptoms: CamExpert Detects no Boards                                      |          |
|    | Symptoms: X64 Xcelera-HS PX8 Does Not Grab                                 |          |
|    | Symptoms: Card grabs black                                                 |          |
|    | Symptoms: Card acquisition bandwidth is less than expected                 | . 33     |
| CA | MEXPERT QUICK START                                                        |          |
|    | INTERFACING CAMERAS WITH CAMEXPERT                                         |          |
|    | CamExpert Example with a Teledyne DALSA HS Camera                          |          |
|    | CAMEXPERT DEMONSTRATION AND TEST TOOLS                                     |          |
|    | Camera Types & Files                                                       | . 36     |
|    | Overview of Sapera Acquisition Parameter Files (*.ccf or *.cca/*.cvi)      |          |
|    | Saving a Camera File                                                       |          |
|    | Camera Interfacing Check List                                              |          |
|    | X64 XCELERA-HS PX8 FLAT FIELD/FLAT LINE SUPPORT                            |          |
|    | Set up Dark and Bright Acquisitions with the Histogram Tool                | . 39     |
|    | Verify a Dark Acqu; isition                                                |          |
|    | Verify a Bright Acquisition<br>Flat Field Correction Calibration Procedure |          |
|    | Using Flat Field Correction                                                |          |
|    |                                                                            |          |
| SA | PERA DEMO APPLICATIONS                                                     |          |
|    | GRAB DEMO OVERVIEW                                                         |          |
|    | Using the Grab Demo                                                        |          |
|    | FLAT-FIELD DEMO OVERVIEW                                                   |          |
|    | Using the Flat Field Demo                                                  | . 46     |
| X6 | 4 XCELERA-HS PX8 REFERENCE                                                 |          |
|    | BLOCK DIAGRAM                                                              |          |
|    | ACQUISITION TIMING                                                         |          |
|    | LINE TRIGGER SOURCE SELECTION FOR LINESCAN APPLICATIONS                    |          |
|    | CORACQ_PRM_EXT_LINE_TRIGGER_SOURCE                                         |          |
|    | SHAFT ENCODER INTERFACE & TIMING                                           |          |
|    | Example using any Encoder Input with Pulse-drop Counter                    |          |
|    | Example using Sequential Encoder Input                                     |          |
|    | VIRTUAL FRAME TRIGGER FOR LINE SCAN CAMERAS                                |          |
|    | Virtual Frame Trigger Timing Diagram                                       |          |
|    | Synchronization Signals for a Virtual Frame of 10 Lines.                   |          |
|    | CVI File (VIC) Parameters Used                                             |          |
|    | SAPERA ACQUISITION METHODS                                                 |          |
|    | TRIGGER TO IMAGE RELIABILITY                                               |          |
|    | Supported Events and Transfer Methods                                      |          |
|    | Trigger Signal Validity<br>Supported Transfer Cycling Methods              | טכ<br>דק |
|    | OUTPUT LUT AVAILABILITY                                                    |          |
|    |                                                                            |          |

|     | X64 XCELERA-HS PX8 SUPPORTED PARAMETERS                                                                                     | . 58 |
|-----|-----------------------------------------------------------------------------------------------------------------------------|------|
|     | Camera Related Capabilities                                                                                                 | . 58 |
|     | Camera Related Parameters                                                                                                   | . 58 |
|     | VIC Related Parameters                                                                                                      | . 61 |
|     | ACQ Related Parameters                                                                                                      | . 64 |
|     | Transfer Related Capabilities                                                                                               |      |
|     | Transfer Related Parameters                                                                                                 |      |
|     | General Outputs: Related Capabilities (for GIO Module #0)                                                                   |      |
|     | General Outputs: Related Parameters (for GIO Module #0)                                                                     |      |
|     | General Inputs: Related Capabilities (for GIO Module #1)                                                                    |      |
|     | General Inputs: Related Parameters (for GIO Module #1)                                                                      |      |
|     | WINDOWS EMBEDDED 7 INSTALLATION                                                                                             |      |
|     | Servers and Resources                                                                                                       |      |
|     | SERVERS AND RESOURCES                                                                                                       | . 07 |
| TE  | CHNICAL SPECIFICATIONS                                                                                                      | 68   |
| 12, | X64 XCELERA-HS PX8 BOARD SPECIFICATIONS                                                                                     |      |
|     | HOST SYSTEM REQUIREMENTS                                                                                                    |      |
|     | EMI CERTIFICATIONS                                                                                                          |      |
|     | CONNECTOR AND SWITCH LOCATIONS                                                                                              |      |
|     |                                                                                                                             |      |
|     | X64 Xcelera-HS PX8 revision A1 Layout Drawing                                                                               |      |
|     | Connector, Switch Description List (revision A1)                                                                            |      |
|     | X64 Xcelera-HS PX8 revision A0 Layout Drawing                                                                               |      |
|     | Connector, Switch Description List (revision A0)                                                                            |      |
|     | X64 XCELERA-HS PX8 END BRACKET DETAIL                                                                                       |      |
|     | CONFIGURATION MICRO-SWITCHES                                                                                                |      |
|     | SW1: General Inputs Signal Switch Point                                                                                     |      |
|     | SW2: Trigger Inputs Signal Switch Point                                                                                     |      |
|     | SW500: Normal/Safe Boot Mode & GEN2 Slot Workaround                                                                         |      |
|     | For Revision A0 Boards Only: J5 Normal/Safe Boot Mode & GEN2 Slot Workaround                                                |      |
|     | J2 HS-Link Input / J3 HS-Link Output Connectors                                                                             |      |
|     | HS-Link Camera Control Signal Overview                                                                                      |      |
|     | STATUS LEDS & LED D2 FUNCTIONAL DESCRIPTION                                                                                 |      |
|     | Status LED 1 Description                                                                                                    |      |
|     | Status LED 2 Description                                                                                                    |      |
|     | LED D2 Boot-up Status Description                                                                                           |      |
|     | CONNECTING EXTERNAL SIGNALS TO THE X64 XCELERA-HS PX8                                                                       |      |
|     | J1: CMD15 Male External Signals Connector                                                                                   | . 80 |
|     | J4: External Signals Connector                                                                                              | . 81 |
|     | I/O Electrical Specifications                                                                                               | . 82 |
|     | Note 1: General Inputs Specifications                                                                                       |      |
|     | Note 2: General Outputs Specifications                                                                                      |      |
|     | Note 3: External Trigger Input Specifications                                                                               |      |
|     | Note 4:Opto-Coupled Shaft Encoder Input Specifications                                                                      |      |
|     | Note 5: Strobe Output Specifications<br>Note 6: DC Power Details for J7                                                     |      |
|     | EXTERNAL SIGNALS CABLING OPTIONS FOR J4                                                                                     |      |
|     | External Signals Connector Bracket Assembly (Type 1)                                                                        |      |
|     | External Signals Connector Bracket Assembly (Type 1) Drawing                                                                |      |
|     | External Signals Connector Bracket Assembly (Type 1) Drawing<br>External Signals Connector Bracket Assembly (Type 1) Pinout |      |
|     | External Signals Connector Bracket Assembly (Type 1) Findut                                                                 |      |
|     | External Signals Connector Bracket Assembly (Type 2) Drawing                                                                |      |
|     | External Signals Connector Bracket Assembly (Type 2) Priout                                                                 |      |
|     | J11: RS-422 Shaft Encoder Input.                                                                                            |      |
|     | TTL Shaft Encoder to RS-422 Input Block Diagram                                                                             |      |
|     | RS-422 (-) Input Bias Source Generation                                                                                     |      |
|     | J9: Board Sync                                                                                                              |      |
|     | CONNECTING MULTIPLE X64 XCELERA-HS PX8 BOARDS TO ONE CAMERA                                                                 |      |
|     |                                                                                                                             |      |

| CONTACT INFORMATION | 93 |
|---------------------|----|
| Sales Information   |    |
| TECHNICAL SUPPORT   | 94 |

# **Tables**

| Table 1: X64 Xcelera-HS PX8 Board Product Numbers                   | 7  |
|---------------------------------------------------------------------|----|
| Table 2: X64 Xcelera-HS PX8 Software Numbers                        | 7  |
| Table 3: X64 Xcelera-HS PX8 Cables & Accessories                    | 8  |
| Table 4: Xcelera-HS PX8 Device Drivers                              | 28 |
| Table 5: Grab Demo Workspace Details                                | 44 |
| Table 6: Flat-Field Demo Workspace Details                          | 46 |
| Table 7: Line Trigger Source                                        | 48 |
| Table 8: CORACQ_PRM_EXT_LINE_TRIGGER_SOURCE - Parameter Values      | 49 |
| Table 9: Output LUT Availability                                    | 57 |
| Table 10: Camera Related Capabilities                               | 58 |
| Table 11: Camera Related Parameters                                 | 58 |
| Table 12: VIC Related Parameters                                    | 61 |
| Table 13: Acquisition Related Parameters                            | 64 |
| Table 14: Transfer Related Capabilities                             | 64 |
| Table 15: Transfer Related Parameters                               | 65 |
| Table 16: GIO-0 Related Capabilities                                | 65 |
| Table 17: GIO-0 Related Parameters                                  | 66 |
| Table 18: GIO-1 Related Capabilities                                | 66 |
| Table 19: GIO-1 Related Parameters                                  | 66 |
| Table 20: X64 Xcelera-HS PX8 Full Board - Servers and Resources     | 67 |
| Table 21: Board Specifications                                      | 68 |
| Table 22: Environment Specifications                                | 69 |
| Table 23: Power Specifications                                      | 69 |
| Table 24: Board A1 Connector List                                   | 72 |
| Table 25: Board A0 Connector List                                   | 73 |
| Table 26: SW1 Switches                                              | 75 |
| Table 27: SW2 Switches                                              | 75 |
| Table 28: SW500 Switches                                            | 76 |
| Table 29: LED 1 Status                                              | 78 |
| Table 30: LED 2 Status                                              | 78 |
| Table 31: D2 Boot-up Status LED                                     | 79 |
| Table 32: CMD15 Connector Detail and Cable OR-X8CC-IO15P wire color | 80 |
| Table 33: J4 Pin Header Pins Detail                                 | 81 |
| Table 34: External Trigger Timing Specifications                    | 84 |
| Table 35: DB37 Cable Connector Details                              | 87 |
| Table 36: DB25 Cable Connector Details                              | 88 |
| Table 37: J11-Connector Details                                     | 89 |

# **Figures**

| Figure 1: Automatic Firmware Update                               | 13 |
|-------------------------------------------------------------------|----|
| Figure 2: Manual Firmware Update                                  | 14 |
| Figure 3: Create an install.ini File                              | 18 |
| Figure 4: Sapera Configuration Program                            | 21 |
| Figure 5: Windows HyperTerminal Setup                             | 21 |
| Figure 6: Board Information via Device Manager                    | 22 |
| Figure 7: PCI Diagnostic Program                                  | 26 |
| Figure 8: PCI Diagnostic Program – PCI bus info                   | 26 |
| Figure 9: Using Windows Device Manager                            | 27 |
| Figure 10: Board Firmware Version                                 | 30 |
| Figure 11: PCI Diagnostic – checking the BUS Master bit           | 32 |
| Figure 12: CamExpert Program                                      | 34 |
| Figure 13: Saving a New Camera File (.ccf)                        | 38 |
| Figure 14: Flat Field - Verify a Dark Acquisition                 | 40 |
| Figure 15: Flat Field - Verify a Bright Acquisition               | 41 |
| Figure 16: Flat Field – Calibration Application                   | 42 |
| Figure 17: Block Diagram                                          | 47 |
| Figure 18: Encoder Input with Pulse-drop Counter                  | 50 |
| Figure 19: Using Shaft Encoder Direction Parameter                | 51 |
| Figure 20: EC & FCC Declaration of Conformity                     | 70 |
| Figure 21: Korean Certification                                   | 71 |
| Figure 22: Board A1 Layout                                        | 72 |
| Figure 23: Board A0 Layout                                        | 73 |
| Figure 24: End Bracket Details                                    | 74 |
| Figure 25: SW1, SW2, SW500 Component View                         | 75 |
| Figure 26: J5 on A0 Boards – Jumpers for Safe Boot and Gen2 Slots | 76 |
| Figure 27: CamExpert - Camera Link Controls                       | 77 |
| Figure 28: Status LEDs location                                   | 78 |
| Figure 29: CMD15 Connector View                                   | 80 |
| Figure 30: General Inputs Electrical Diagram                      | 82 |
| Figure 31: General Outputs Electrical Diagram                     | 82 |
| Figure 32: External Trigger Inputs Electrical Diagram             | 83 |
| Figure 33: External Trigger Input Validation & Delay              | 84 |
| Figure 34: Opto-Coupled Shaft Encoder Input Electrical Diagram    | 84 |
| Figure 35: Strobe Output Electrical Diagram                       | 85 |
| Figure 36: DB37 Output Cable                                      | 86 |
| Figure 37: DB25 Output Cable                                      | 88 |
| Figure 38: RS-422 Shaft Encoder Input Electrical Diagram          | 89 |
| Figure 39: Connecting TTL to RS-422 Shaft Encoder Inputs          | 90 |
| Figure 40: Generating a DC Bias Voltage                           | 90 |
|                                                                   |    |

# **Overview**

## **Product Part Numbers**

#### X64 Xcelera-HS PX8 Board

Table 1: X64 Xcelera-HS PX8 Board Product Numbers

| Item                                                                       | Product Number |
|----------------------------------------------------------------------------|----------------|
| X64 Xcelera-HS PX8 with 512MB memory (256MB frame buffer/256MB processing) | OR-X8H0-RP400  |
| For OEM clients, this manual in printed form, is available on request      | OC-X8HM-PUSR0  |

#### X64 Xcelera-HS PX8 Software

Table 2: X64 Xcelera-HS PX8 Software Numbers

| Item                                                                                                                              | Product Number                     |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Sapera LT version 6.30 or later (required but sold separately)                                                                    | OC-SL00-0000000                    |
| 1. Sapera LT: Provides everything you will need to build your imaging application. Sapera 7.10 required for full feature support. |                                    |
| 2. Current Sapera compliant board hardware drivers                                                                                |                                    |
| 3. Board documentation in PDF format                                                                                              |                                    |
| 4. Sapera documentation in PDF and compiled HTML help formats                                                                     |                                    |
|                                                                                                                                   |                                    |
| <i>(optional)</i><br>Sapera Processing Imaging Development Library includes over 600 optimized image-processing routines.         | Contact Sales at<br>Teledyne DALSA |

#### X64 Xcelera-HS PX8 Cables & Accessories

Table 3: X64 Xcelera-HS PX8 Cables & Accessories

| Item                                                                                                                                                                                                                                                                                                                                                                                       | Product Number                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| <b>CMD cable assembly</b><br>(I/O 15 pin Micro D connector with 6 ft. blunt end cable)<br>This cable assembly connects to J1.<br>(see J1: CMD15 Male External Signals Connector)                                                                                                                                                                                                           | OR-X8CC-IO15P                      |
| <i>(optional)</i> X64 Xcelera-HS PX8 can be shipped with an External Signals<br>Connector Bracket Assembly, either with a <b>DB37 or DB25</b> connector (see<br>the two product numbers below). Either cable, if required, should be specified<br>at the time of order. Note: clients requiring a limited number of I/Os, can<br>also use the CMD15 connector that is on the main bracket. |                                    |
| <b>DB37 assembly</b><br>see External Signals Connector Bracket Assembly (Type 1).<br>This cable assembly connects to J4.                                                                                                                                                                                                                                                                   | OR-X4CC-IOCAB                      |
| <b>DB25 assembly</b><br>see External Signals Connector Bracket Assembly (Type 2).<br>Provides direct compatibility with external cables made for products such as<br>the X64-CL iPro. This cable assembly connects to J4.                                                                                                                                                                  | OR-X4CC-0TIO2                      |
|                                                                                                                                                                                                                                                                                                                                                                                            |                                    |
| (optional) Cable assembly to connect to J11 (RS-422 Shaft Encoder Inputs)                                                                                                                                                                                                                                                                                                                  | Contact Sales at<br>Teledyne DALSA |
| (optional) Cable assembly to connect to J9 (Board Sync)                                                                                                                                                                                                                                                                                                                                    |                                    |
| Connecting 2 boards<br>Connection 3 or 4 boards                                                                                                                                                                                                                                                                                                                                            | OR-X4CC-MTRIG<br>OR-X4CC-MTRIG4    |
| <i>(optional)</i> Power interface cable required when one wants to use 12V or 5V supplied on the IO cable assembly.                                                                                                                                                                                                                                                                        | OR-COMC-POW03                      |
| (optional) CX4 Cable:                                                                                                                                                                                                                                                                                                                                                                      | Contact Sales at<br>Teledyne DALSA |

## About the X64 Xcelera-HS PX8 Frame Grabber

#### **Series Key Features**

- Supports area scan or linescan cameras using HS Link
- Uses a PCIe x8 slot to maximize transfers to host computer buffers
- Monochrome 8-bit, 10-bit, 12-bit pixel support
- LUT available in multi-formats
- 2<sup>nd</sup> CX4 connector (HS Link) to redirect image data to another Xcelera HS-PX8 frame grabber
- Input Trigger and Shaft Encoder inputs (either opto-coupled or TTL/RS-422)
- Shaft Encoder features include Direction, Line Trigger, Auto Delay, Line Trigger Too Fast, and Shaft Encoder Reverse Count Overflow
- Time Integration
- Horizontal and Vertical Flip supported on board
- Support for real time Flat Field / Flat Line Correction
- Output Strobe
- Supports a number of acquisition events in compliance with "Trigger to Image Reliability"
- RoHS compliant

See the Technical Specifications section for detailed information.

#### **User Programmable Configurations**

Use the X64 Xcelera-HS PX8 firmware loader function in the Teledyne DALSA Device manager utility to select firmware for one of the supported modes. Firmware selection is made either during driver installation or manually later on (see the Firmware Update: Manual Mode section).

#### For the X64 Xcelera-HS PX8 board the firmware choices are:

- **1 x High Speed Camera** (*installation default selection*) Support for one Camera HS-Link port with 8 bit Flat Field Correction.
- **1 x High Speed Camera** with 12 bit FFC/FLC Support for one Camera HS-Link port with 12 bit Flat Field Correction.

## **ACUPlus: Acquisition Control Unit**

ACUPlus consists of a grab controller, pixel packer, and time base generator. ACUPlus provides a flexible acquisition front end for a wide variety of imaging solutions.

ACUPlus acquires variable frame sizes up to 256KB per horizontal line and up to 16 million lines per frame. ACUPlus can also capture an infinite number of lines from a linescan camera without losing a single line of data.

## **DTE: Intelligent Data Transfer Engine**

The X64 Xcelera-HS PX8 intelligent Data Transfer Engine ensures fast image data transfers between the board and the host computer with zero CPU usage. The DTE provides a high degree of data integrity during continuous image acquisition in a non-real time operating system like Windows. DTE consists of multiple independent DMA units, Tap Descriptor Tables, and Auto-loading Scatter-Gather tables.

#### **PCI Express x8 Interface**

The X64 Xcelera-HS PX8 is a universal PCI Express x8 board, compliant with the PCI Express 1.1 specification. The X64 Xcelera-HS PX8 board achieves transfer rates up to 1.5 Gbytes/sec.

The X64 Xcelera-HS PX8 board occupies one PCI Express x8 expansion slot and one chassis opening.

#### **Important:**

- Older computers may not support the maximum data transfer bandwidth defined for PCI Express x8. Such computers may electrically support only x4 devices even in their x8 slot. The X64 Xcelera-HS PX8 will function correctly in such a computer but at a lower maximum data rate.
- If the computer only has a PCI Express x16 slot, direct installation tests or the computer documentation is required to know if the X64 Xcelera-HS PX8 is supported. It has been seen that many computer motherboards only support x16 products in x16 slots (commonly used with graphic video boards).

#### **Advanced Controls Overview**

#### **Visual Indicators**

X64 Xcelera-HS PX8 features 3 LED indicators to facilitate system installation and setup, two on the board bracket and one located on the top edge of the board. These indicators provide visual feedback on the board status and camera status.

#### **External Event Synchronization**

Trigger inputs and strobe signal are provided to precisely synchronize image captures with external events.

#### **HS-Link Communications ports**

One PC independent communication port provides HS-Link controls for camera configurations. This port does not require additional PC resources like free interrupts or I/O address space. Accessible via the board device driver, the communication port presents a seamless interface to Windows-based standard communication applications like HyperTerminal, etc.

#### **Quadrature Shaft Encoder**

An important feature for web scanning applications, the Quadrature-Shaft-Encoder inputs allow synchronized line captures from external web encoders. The X64 Xcelera-HS PX8 provides two ways to connect a shaft encoder: (1) an opto-coupled input that supports a tick rate of up to 200 kHz and (2) an RS-422 input that supports a tick rate of up to 5 MHz.

## **Development Software Overview**

### Sapera++ LT Library

Sapera++ LT is a powerful development library for image acquisition and control. Sapera++ LT provides a single API across all current and future Teledyne DALSA hardware. Sapera++ LT delivers a comprehensive feature set including program portability, versatile camera controls, flexible display functionality and management, plus easy to use application development wizards. Applications are developed using either C++ or .NET frameworks.

Sapera++ LT comes bundled with CamExpert, an easy to use camera configuration utility to create new, or modify existing camera configuration files.

## Sapera Processing Library

Sapera Processing is a comprehensive set of C++ classes or .NET classes for image processing and analysis. Sapera Processing offers highly optimized tools for image processing, blob analysis, search (pattern recognition), OCR and barcode decoding.

# **Installing X64 Xcelera-HS PX8**

# Warning! (Grounding Instructions)

Static electricity can damage electronic components. Please discharge any static electrical charge by touching a grounded surface, such as the metal computer chassis, before performing any hardware installation. If you do not feel comfortable performing the installation, please consult a qualified computer technician.



**Warning**: Never remove or install any hardware component with the computer power on. Never connect a floppy drive power cable to J7 when the computer is powered on.

**Important**: Disconnect the power cord from the computer to disable the power standby mode. This prevents the case where some computers unexpectedly power up when a board is installed.

## Installation



**Note:** to install Sapera LT and the X64 Xcelera-HS PX8 device driver, logon to the workstation as administrator or with an account that has administrator privileges.

The Sapera LT Development Library (or 'runtime library' if application execution without development is preferred) must be installed before the Xcelera-HS PX8 device driver.

- Turn the computer off, disconnect the power cord (disables power standby mode), and open the computer chassis to allow access to the expansion slot area.
- Install the X64 Xcelera-HS PX8 into a free PCI Express x8 expansion slot. Note that some computer's x16 slot may support the X64 Xcelera-HS PX8.
- Close the computer chassis and turn the computer on.
- Logon to the computer as administrator or with an account that has administrator privileges.
- Windows will find the X64 Xcelera-HS PX8 and start its Found New Hardware Wizard. Click on the Cancel button to close the Wizard.

### Sapera LT Library Installation

- Insert the Teledyne DALSA Sapera Essential CD-ROM. If **AUTORUN** is enabled on your computer, the installation menu is presented.
- If **AUTORUN** is not enabled, use Windows Explorer and browse to the root directory of the CD-ROM. Execute **launch.exe** to start the installation menu and install the required Sapera components.
- Continue with the installation of the board driver as described in the next section.
- The installation program will prompt you to reboot the computer.

Refer to Sapera LT User's Manual for additional details about Sapera LT.

## X64 Xcelera-HS PX8 Driver Installation

The X64 Xcelera-HS PX8 board driver supports installation in a Windows 7, Windows 8, or Windows 10 system.

- If Sapera was just installed, continue by selecting the X64 Xcelera-HS PX8 driver installation.
- If Sapera was installed previously, insert the Teledyne DALSA Sapera Essential CD-ROM to now install the board driver. If **AUTORUN** is enabled on your computer, the installation menu is presented. Install the X64 Xcelera-HS PX8 driver.
- If **AUTORUN** is not enabled, use Windows Explorer and browse to the root directory of the CD-ROM. Execute **launch.exe** to start the installation menu and install the X64 Xcelera-HS PX8 driver. During the late stages of the installation, the X64 Xcelera-HS PX8 firmware loader application starts. This is described in detail in the following section.
- If Windows displays any unexpected message concerning the installed board, power off the system and verify that the X64 Xcelera-HS PX8 is installed in the slot properly.

## X64 Xcelera-HS PX8 Firmware Loader

After Windows boots, the Device Manager-Firmware Loader program automatically executes at the end of the driver installation and on every subsequent reboot of the computer. It will determine if the X64 Xcelera-HS PX8 requires a firmware update. If firmware is required, a dialog displays and it also allows the user to load firmware for alternate operational modes of the X64 Xcelera-HS PX8 (if made available by Teledyne DALSA).

*Important*: In the very rare case of firmware loader errors please see the Recovering from a Firmware Update Error section.

#### Firmware Update: Automatic Mode

Click **Automatic** to update the X64 Xcelera-HS PX8 firmware with the default package. The X64 Xcelera-HS PX8 currently supports one firmware configuration.

See the Series Key Features and User Programmable Configurations sections for details on supported modes, which can be selected via a manual firmware update.

If there are multiple X64 Xcelera-HS PX8 boards in the system, all will be updated with new firmware. If any installed X64 Xcelera-HS PX8 board installed in a system already has the correct firmware version, an update is not required. In the following screen shot, a single X64 Xcelera-HS PX8 board is installed in the system and the default configuration is ready to be programmed.

| Select "Automatic " to<br>Select " Manual " to u |               |                       |                 |   |
|--------------------------------------------------|---------------|-----------------------|-----------------|---|
| Device                                           | Serial Number | Configuration         | Status          | _ |
| Xcelera-HS_PX8_1                                 | S4567005      | 1 x High Speed Camera | Update Required |   |

Figure 1: Automatic Firmware Update

#### Firmware Update: Manual Mode

Select **Manual** mode to load firmware other than the default version or when, in the case of multiple X64 Xcelera-HS PX8 boards in the same system, if each requires different firmware.

The figure below shows the Device Manager manual firmware screen. Information on all installed X64 Xcelera-HS PX8 boards, their serial numbers, and their firmware components are shown.

#### A manual firmware update is made as follows:

- Select the X64 Xcelera-HS PX8 to update via the board selection box (if there are multiple boards in the system)
- From the Configuration field drop menu select the firmware version required
- Click on the Start Update button
- Observe the firmware update progress in the message output window
- Close the Device manager program when the device reset complete message is shown.

| file Tools Help                       |                                 |                                                          |     |
|---------------------------------------|---------------------------------|----------------------------------------------------------|-----|
| imware Update Manag                   | ier                             |                                                          |     |
|                                       | e Config file Load Config File  | Same Configuration For All Devices                       |     |
| Device                                | Field                           | Value                                                    | - 1 |
| Xcelera-HS_FX8_1<br>Update Firmware 🔽 | Serial Number<br>Device Version | \$4567005<br>A1                                          |     |
|                                       | ACU/DTE + PCIe x8 Interface     | 1.20.00.0325                                             |     |
|                                       | Configuration<br>Information    | 1 x High Speed Camera<br>Support for one High Speed port | Ŧ   |
|                                       | Firmware State                  | Update Not Required                                      |     |
|                                       |                                 |                                                          |     |
| Devide Inta Firmwa                    | aré Updaté                      |                                                          |     |
| Device Inta Firmwi<br>Dutput          | arë Updatë                      |                                                          |     |

Figure 2: Manual Firmware Update

#### Executing the Firmware Loader from the Start Menu

If required, the Xcelera-HS PX8 Firmware Loader program can be executed via the Windows Start Menu shortcut **Start • All Programs • Teledyne DALSA • X64 Xcelera-HS PX8 Device Driver** • **Firmware Update**. A firmware change after installation would be required to select a different Camera HS-Link configuration mode (if avalable). See the User Programmable Configurations section.

# **Requirements for a Silent Install**

Both Sapera LT and the X64 Xcelera-HS PX8 driver installations share the same installer technology. When the installations of Teledyne DALSA products are embedded within a third party's product installation, the mode can either have user interaction or be completely silent. The following installation mode descriptions apply to both Sapera and the hardware driver.



**Note**: You must reboot after the installation of Sapera LT. However, to streamline the installation process, Sapera LT can be installed without rebooting before installing the board hardware device drivers. The installations then complete with a single final system reboot.

Perform Teledyne DALSA embedded installations in either of these two ways:

#### Normal Mode

The default mode is interactive. This is identical to running the setup.exe program manually from Windows (either run from Windows Explorer or the Windows command line).

#### Silent Mode

This mode requires no user interaction. A preconfigured "response" file provides the user input. The installer displays nothing.

## **Silent Mode Installation**

A Silent Mode installation is recommended when integrating Teledyne DALSA products into your software installation. The silent installation mode allows the device driver installation to proceed without the need for mouse clicks or other input from a user.

Preparing a Silent Mode Installation requires two steps:

- Prepare the response file, which emulates a user.
- Invoke the device driver installer with command options to use the prepared response file.

#### **Creating a Response File**

Create the installer response file by performing a device driver installation with a command line switch "-r". The response file is automatically named setup.iss and is saved in the \windows folder. If a specific directory is desired, the switch -f1 is used.

As an example, to save a response file in the same directory as the installation executable of the X64 Xcelera-HS PX8, the command line would be:

X64\_Xcelera-HS\_PX8\_1.00.00.0000 -r -f1".\setup.iss"

#### **Running a Silent Mode Installation**

A device driver silent installation, whether done alone or within a larger software installation requires the device driver executable and the generated response file **setup.iss**.

Execute the device driver installer with the following command line:

X64\_Xcelera-HS\_PX8\_1.00.00.0000 -s -f1".\setup.iss"

Where the -s switch specifies the silent mode and the -f1 switch specifies the location of the response file. In this example, the switch -f1".\setup.iss" specifies that the setup.iss file be in the same folder as the device driver installer.



**Note:** The Windows Security dialog box will appear unless one has already notified Windows to 'Always trust software from "DALSA Corp." during a previous installation of a driver.

## Silent Mode Uninstall

Similar to a silent installation, a response file must be prepared first as follows.

#### **Creating a Response File**

The installer response file is created by performing a device driver un-installation with a command line switch "-r". The response file is automatically named setup\_uninstall.iss which is saved in the \windows folder. If a specific directory is desired, the switch "-f1" is used.

As an example, to save a response file in the same directory as the installation executable of the X64 Xcelera-HS PX8, the command line would be:

X64\_Xcelera-HS\_PX8\_1.00.00.0000 -r -f1".\setup\_uninstall.iss"

#### **Running a Silent Mode Uninstall**

Similar to the device driver silent mode installation, the un-installation requires the device driver executable and the generated response file setup.iss.

Execute the device driver installer with the following command line:

X64\_Xcelera-HS\_PX8\_1.00.00.0000 -s -f1".\setup\_uninstall.iss"

Where the **-s** switch specifies the silent mode and the **-f1** switch specifies the location of the response file. In this example, the switch **-f1**".\setup\_uninstall.iss" specifies that the **setup\_uninstall.iss** file be in the same folder as the device driver installer.

### Silent Mode Installation Return Code

A silent mode installation creates a file "corinstall.ini" in the Windows directory. A section called [SetupResult] contains the 'status' of the installation. A value of 1 indicates that the installation has started and a value of 2 indicates that the installation has terminated.

A silent mode installation also creates a log file "setup.log" which by default is created in the same directory and with the same name (except for the extension) as the response file. The /f2 option enables you to specify an alternative log file location and file name, as in Setup.exe /s /f2"C:\Setup.log".

The "setup.log" file contains three sections. The first section, [InstallShield Silent], identifies the version of InstallShield used in the silent installation. It also identifies the file as a log file. The second section, [Application], identifies the installed application name, version, and the company name. The third section, [ResponseResult], contains the 'ResultCode' indicating whether the silent installation succeeded. A value of 0 means the installation was successful.

## Installation Setup with CorAppLauncher.exe

The installation setup can be run with the CorAppLauncher.exe tool provided with the driver.

- Install the board driver and get CorAppLauncher.exe from the \bin directory of the installation.
- When running the installation, CorAppLauncher.exe will return only when the installation is finished.
- When run from within a batch file, obtain the installation exit code from the ERRORLEVEL value.
- The arguments to CorAppLauncher.exe are
  - -I: Launch application
  - -f: Application to launch. Specify a fully qualified path.

#### As an example:

- CorAppLauncher –I –f"c:\driver\_install\X64\_Xcelera-HS\_PX8\_1.00.0100000.exe"
- IF %ERRORLEVEL% NEQ 0 goto launch error

**Note:** There is a 32-bit and 64-bit version of CorAppLauncher.exe. When installing the driver, only the version related to the OS is installed. However, the 32-bit version is usable on either 32-bit or 64-bit Windows.

## **Custom Driver Installation using install.ini**

Customize the driver installation by parameters defined in the file "install.ini". By using this file, the user can:

- Select the user default configuration.
- Select different configurations for systems with multiple boards.
- Assign a standard Serial COM port to the board.

#### Creating the install.ini File

- Install the driver in the target computer. All X64 Xcelera-HS PX8 boards required in the system must be installed.
- Configure each board's acquisition firmware using the Teledyne DALSA Device Manager tool (see Firmware Update: Manual Mode).
- If a standard Serial COM port is required for any board, use the Sapera Configuration tool (see COM Port Assignment).
- When each board setup is complete, using the Teledyne DALSA Device Manager tool, click on the Save Config File button. This will create the "install.ini" file.

| File Tools He                     | lp   |                                 |                                                          |  |
|-----------------------------------|------|---------------------------------|----------------------------------------------------------|--|
| Firmware Update M                 | anag | er                              |                                                          |  |
| Start Update                      | Save | Config file Load Config File    | Same Configuration For All Devices                       |  |
| Device                            | -    | Field                           | Value                                                    |  |
| Xtium-HS_PX8_1<br>Update Firmware |      | Serial Number<br>Device Version | H0757007<br>0x0000000000000000                           |  |
|                                   | 7    | ACU/DTE + PCIe Interface        | 1.00.01.0124                                             |  |
|                                   |      | Configuration                   | 1 x High Speed Camera<br>Support for one High Speed port |  |
|                                   |      | Firmware State                  | Update Not Required                                      |  |
|                                   |      | rimware state                   | upuate Not nequiled                                      |  |
| Devide Inta F                     | ìmwa |                                 | Update Not hequired                                      |  |
| Devide Infa F<br>Dutput           | ìmwa |                                 |                                                          |  |
| -                                 | ìmwa |                                 |                                                          |  |

Figure 3: Create an install.ini File

#### Run the Installation using install.ini

Copy the install.ini file into the same directory as the setup installation file. Run the setup installation as normal. The installation will automatically check for an install.ini file and if found, use the configuration defined in it.

# **Upgrading Sapera or Board Driver**

When installing a new version of Sapera or a Teledyne DALSA acquisition board driver in a computer with a previous installation, the current version **must** be un-installed first. Upgrade scenarios are described below.

## **Board Driver Upgrade Only**

Minor upgrades to acquisition board drivers are typically distributed as ZIP files available in the Teledyne DALSA web site <u>http://www.teledynedalsa.com/imaging/support/downloads/drivers/</u>. Board driver revisions are also available on the next release of the Sapera Essential CD-ROM.

Often minor board driver upgrades do not require a new revision of Sapera. To confirm that the current Sapera version will work with the new board driver:

- Check the new board driver ReadMe file before installing, for information on the minimum Sapera version required.
- If the ReadMe file does not specify the Sapera version required, contact Teledyne DALSA Technical Support (see the Technical Support section).

#### To upgrade the board driver only:

- Logon the computer as an administrator or with an account that has administrator privileges.
- In Windows 7, from the start menu select Start Control Panel Programs and Features. Double-click the Teledyne DALSA Xcelera board driver and click Remove.
- In **Windows 8 & Windows 10**, just type Control Panel while in the start screen, or click the arrow in the lower left side to bring up the all applications window. Select Programs and Features, then double-click the Teledyne DALSA Xcelera board driver and click **Remove**.
- Install the new board driver. Run **Setup.exe** if installing manually from a downloaded driver file.
- If the new driver is on a Sapera Essential CD-ROM follow the installation procedure described in the X64 Xcelera-HS PX8 Driver section.
- Important: You cannot install a Teledyne DALSA board driver without Sapera LT installed on the computer.

## **Upgrading both Sapera and Board Driver**

When both Sapera and the acquisition board driver are upgraded, follow the procedure described below.

- Logon the computeras an administrator or with an account that has administrator privileges.
- In Windows 7, from the start menu select Start Control Panel Programs and Features. Double-click the Teledyne DALSA Xcelera board driver and click Remove. Follow by also removing the older version of Sapera LT.
- In Windows 8 & Windows 10, just type Control Panel while in the start screen, or click the arrow in the lower left side to bring up the all applications window. Select **Programs** and Features, then double-click the Teledyne DALSA Xcelera board driver and click Remove. Do the same procedure with SaperaLT.
- Reboot the computer and logon the computer as an administrator again.
- Install the new versions of Sapera and the board driver as if this was a first time installation. See the Sapera LT Library Installation and X64 Xcelera-HS PX8 Driver sections for installation procedures.

# **Using the HS-Link Serial Control Port**

The HS-Link specification includes a serial communication port for direct camera control by the frame grabber (see the CamExpert Quick Start section). The X64 Xcelera-HS PX8 driver supports this serial communication port either directly or by mapping it to a host computer COM port. Any serial port communication program, such as Windows HyperTerminal, can connect to the camera in use and modify its function modes via its serial port controls. The X64 Xcelera-HS PX8 serial port supports communication speeds from 9600 to 115 kbps.



**Note:** If your serial communication program can directly select the X64 Xcelera-HS PX8 serial port then mapping to a system COM port is not necessary.

The X64 Xcelera-HS PX8 serial port is mapped to an available COM port by using the Sapera Configuration tool. Run the program from the Windows start menu: **Start • All Programs • Teledyne DALSA • Sapera LT • Sapera Configuration**.

## **COM Port Assignment**

The lower section of the Sapera Configuration program screen contains the serial port configuration menu. Configure as follows:

- Use the **Physical Port** drop menu to select the Sapera board device from all available Sapera boards with serial ports (when more then one board is in the system).
- Use the Maps to drop menu to assign an available COM number to that Sapera board serial port.
- Click on the **Save Settings Now** button then the **Close** button. You are prompted to reboot your computer to enable the serial port mapping.
- The X64 Xcelera-HS PX8 serial port, now mapped to COM3 in this example, is available as a serial port to any serial port application for camera control. Note that this serial port is not listed in the **Windows Control Panel** System Properties• Device Manager because it is a logical serial port mapping.
- An example setup using Windows HyperTerminal follows.

| Server List                                                   |                                                                                                                 |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Index Name<br>0 System<br>1 Xcelera-HS_PX8_1                  | Info Type Additional Information<br>(n/a)<br>Serial number \$4567005                                            |
| Allocated                                                     | Bytes 6 MByte                                                                                                   |
| Serial Port Configuration<br>Physical port                    | Xcelera-HS_FX8_1_Serial_0                                                                                       |
| COM port mapping (optional)<br>Teledyne DALSA camera detectio | None .                                                                                                          |
|                                                               | CamExpert will not try to detect any Teledyne<br>DALSA cameras on this COM port                                 |
| Baudrate                                                      | Auto Detes(                                                                                                     |
|                                                               | Will find the baud rate that the camera is currer<br>set to and it will setup the frame grabber<br>accordingly. |
|                                                               |                                                                                                                 |

Figure 4: Sapera Configuration Program

#### **Setup Example with Windows HyperTerminal**

- Run HyperTerminal and type a name for the new connection when prompted. Then click OK.
- On the following dialog screen select the port to connect to. The port could be the COM port mapped to the X64 Xcelera-HS PX8 or the COM device as shown in this example.

| Connection Description 🔹 👔 🔀                        | Connect To                                                |
|-----------------------------------------------------|-----------------------------------------------------------|
| New Connection                                      | NS serial                                                 |
| Enter a name and choose an icon for the connection: | Enter details for the phone number that you want to dial: |
| Name:<br>HS seria                                   | Country/region: United States (1)                         |
| Loon:                                               | Ar <u>e</u> a code: 666                                   |
| 📓 🙈 🕼 🚳 🔊 💋                                         | Phone number:                                             |
|                                                     | Connect using: Xcelera-HS_PX8_1_Serial_0                  |
| OK Cancel                                           | OK Cancel                                                 |

Figure 5: Windows HyperTerminal Setup

• HyperTerminal now presents a dialog to configure the COM port properties. Change settings as required by the camera you are connecting to. Note that the X64 Xcelera-HS PX8 serial port does not support hardware flow control.

# **Displaying X64 Xcelera-HS PX8 Board Information**

The Device Manager program also displays information about the X64 Xcelera-HS PX8 boards installed in the system. To view board information run the program via the Windows Start Menu shortcut Start • All Programs • Teledyne DALSA • X64 Xcelera-HS PX8 Device Driver • Device Manager.

### **Device Manager – Board Viewer**

The following screen image shows the Device Manager program with the Information/Firmware tab active. The left window displays all Dalsa boards in the system and their individual device components. The right window displays the information stored in the selected board device. This example screen shows the X64 Xcelera-HS PX8 information contained in the EEProm component.

The X64 Xcelera-HS PX8 device manager report file (BoardInfo.txt) is generated by clicking **File** • **Save Device Info**. This report file may be requested by Teledyne DALSA Technical Support to aid in troubleshooting installation or operational problems.

| evice Info Manager          |                          |          |    |
|-----------------------------|--------------------------|----------|----|
| Program Refresh F           | Reset                    |          |    |
| levice                      | Information              |          |    |
| Xcelera-HS_PX8_1            | Field                    | Value    | 1  |
| Information                 | Template version         | 3        | ][ |
| Firmware                    | Drawing Number           | 2570     |    |
|                             | Issue                    | A        |    |
|                             | Revision                 | 1        |    |
|                             | Vendor ID                | 0x11EC   |    |
|                             | Last ECO                 | 6990     |    |
|                             | CMI                      | 0x0000   |    |
|                             | Extension                | 0        |    |
|                             | Serial Number            | S4567005 |    |
|                             | Component Version        | 0        |    |
|                             | Optional ECO             | 0x0      |    |
| S cure is man               | P. de Tierrelate Version | E        | 2  |
| Device Info Firmware Update |                          |          |    |
| utput                       |                          |          |    |
|                             |                          |          |    |

Figure 6: Board Information via Device Manager

# **Configuring Sapera**

### **Viewing Installed Sapera Servers**

The Sapera configuration program (**Start • All Programs • Teledyne DALSA • Sapera LT • Sapera Configuration**) allows the user to see all available Sapera servers for the installed Sapera-compatible boards. The **System** entry represents the system server. It corresponds to the host machine (your computer) and is the only server that should always be present.

### **Increasing Contiguous Memory for Sapera Resources**

The **Contiguous Memory** section lets the user specify the total amount of contiguous memory (a block of physical memory, occupying consecutive addresses) reserved for the resources needed for **Sapera buffers** allocation and **Sapera messaging**. For both items, the **Requested** value dialog box shows the driver default memory setting while the **Allocated** value displays the amount of contiguous memory that has been allocated successfully. The default values will generally satisfy the needs of most applications.

The **Sapera buffers** value determines the total amount of contiguous memory reserved at boot time for the allocation of dynamic resources used for host frame buffer management such as scatter-gather list, DMA descriptor tables plus other kernel needs. Adjust this value higher if your application generates any out-of-memory error while allocating host frame buffers. You can approximate the amount of contiguous memory required as follows:

- Calculate the total amount of host memory used for frame buffers
   [ number of frame buffers number of pixels per line number of lines (2 if buffer is 10
   or 12 bits) ].
- Provide 1MB for every 256 MB of host frame buffer memory required.
- Add an additional 1 MB if the frame buffers have a short line length, say 1k or less ( the increased number of individual frame buffers requires more resources ).
- Add an additional 2 MB for various static and dynamic Sapera resources.
- Add the amount of memory needed for DMA tables using the formula (Sapera 7.10 and up):
   [ number of frame buffers number of lines 16 (line length in bytes / 4kB)].

Test for any memory error when allocating host buffers. Simply use the Buffer menu of the Sapera Grab demo program (see the Sapera Demo Applications section) to allocate the number of host buffers required for your acquisition source. Feel free to test the maximum limit of host buffers possible on your host system – the Sapera Grab demo will not crash when the requested number of host frame buffers cannot be allocated.

#### Host Computer Frame Buffer Memory Limitations

When planning a Sapera application and its host frame buffers used, plus other Sapera memory resources, do not forget the Windows operating system memory needs.

A Sapera application using the preferred *scatter gather buffers* could consume most of the remaining system memory, if a large number of frame buffers are allocated. If using frame buffers allocated as a *single contiguous memory block*, Windows will limit the allocation dependent on the installed system memory. Use the Buffer menu of the Sapera Grab demo program to allocate host buffer memory until an error message signals the limit allowed by the operating system used.

#### **Contiguous Memory for Sapera Messaging**

The current value for **Sapera messaging** determines the total amount of contiguous memory reserved at boot time for messages allocation. This memory space is used to store arguments when a Sapera function is called. Increase this value if you are using functions with large arguments, such as arrays and experience any memory errors.

# **Troubleshooting Problems**

## **Overview**

The X64 Xcelera-HS PX8 (and the X64 family of products) has been tested by Teledyne DALSA in a variety of computers. Although unlikely, installation problems may occur due to the constant changing nature of computer equipment and operating systems. This section describes what the user can verify to determine the problem or the checks to make before contacting Teledyne DALSA Technical Support.

If you require help and need to contact Teledyne DALSA Technical Support, make detailed notes on your installation and/or test results for our technical support to review. See the Technical Support section for contact information.

# **Problem Type Summary**

X64 Xcelera-HS PX8 problems are either installation types where the board hardware is not recognized on the PCIe bus (i.e. trained) or function errors due to camera connections or bandwidth issues. The following links jump to various topics in this troubleshooting section.

## First Step: Check the Status LED

A flashing RED Status LED 1 indicates a computer bus issue (possibly the Gen2 slot error described below), while a solid YELLOW Status LED 1 indicates the board is currently in safe mode. The complete status LED description is available in the technical reference section (see the Status LEDs & LED D2 Functional Description section.

## **Possible Installation Problems**

- Hardware PCI bus conflict: When a new installation produces PCI bus error messages or the board driver doesn't install, it is important to verify that there are no conflicts with other PCI or system devices already installed. Use the Teledyne DALSA PCI Diagnostic tool as described in the Checking for PCI Bus Conflicts section. Also verify the installation via the Windows Device Manager.
- **Gen2 slot errors**: There is a PCI bus error message from the computer bios. Follow the instructions in the GEN2 Slot Computer Issue section.
- Verify Sapera and Board drivers: If there are errors when running applications, confirm that all Sapera and board drivers are running. See the Sapera and Hardware Windows Drivers section for details. In addition, Teledyne DALSA technical support will ask for the log file of messages by Teledyne DALSA drivers. Follow the instructions describe in the Teledyne DALSA Log Viewer section.
- **Firmware update error**: There was an error during the X64 Xcelera-HS PX8 firmware update procedure. This usually is easily corrected by the user. Follow the instructions in the Recovering from a Firmware Update Error section.
- Installation went well but the board doesn't work or stopped working. Review the steps described in the Symptoms: CamExpert Detects no Boards section.

## **Possible Functional Problems**

- Driver Information: Use the Teledyne DALSA device manager program to view information about the installed X64 Xcelera-HS PX8 board and driver. See the Driver Information via the Device Manager Program section.
- Area scan memory requirements: The X64 Xcelera-HS PX8 on board memory provides by default two frame buffers large enough for most imaging situations.
   See the Memory Requirements with Area Scan Acquisitions section for details on the on board memory and possible limitations.

Sometimes the problem symptoms are not the result of an installation issue but due to other system issues. Review the sections described below for solutions to various X64 Xcelera-HS PX8 functional problems.

- Symptoms: X64 Xcelera-HS PX8 Does Not Grab
- Symptoms: Card grabs black
- Symptoms: Card acquisition bandwidth is less than expected

## **Troubleshooting Procedures**

The following sections provide information and solutions to possible X64 Xcelera-HS PX8 installation and functional problems. These topics are summarized in the previous section of this manual.

### **Checking for PCI Bus Conflicts**

One of the first items to check when there is a problem with any PCI board is to examine the system PCI configuration and ensure that there are no conflicts with other PCI or system devices. The *PCI Diagnostic* program (**cpcidiag.exe**) allows examination of the PCI configuration registers and can save this information to a text file. Run the program via the Windows Start Menu shortcut **Start • All Programs • Teledyne DALSA • Sapera LT • Tools • PCI Diagnostics**.

As shown in the following screen image, use the first drop menu to select the PCI device to examine. Select the device from Teledyne DALSA. Note the bus and slot number of the installed board (this will be unique for each system unless systems are setup identically). Click on the **Diagnostic** button to view an analysis of the system PCI configuration space.

| PCI device                                                        |                                                   |                 |
|-------------------------------------------------------------------|---------------------------------------------------|-----------------|
| X64 Xcelera HS PX8 from Teledyne DALSA (bus 4, slot 0, function 💌 | Device enabled Rescan devices                     | Re              |
| Vendor ID 0x11EC Rev. ID 0x01 Latency 0x00                        | Hex dump<br>addr 0                                |                 |
| Dévice ID 0x2570 IntLine 0x10 Min Grant 0x00                      | 8-bit 0x00> 0x257011EC<br>16-bit 0x04> 0x00100006 | -               |
| SubVendID 0x0008 IntPin 0x01 Max Lat. 0x00                        | 0x08> 0x05800001                                  | l.              |
|                                                                   | Edit 0x0C> 0x00000040                             |                 |
|                                                                   |                                                   |                 |
| Command<br>0x0006 FBB SERR Wait PE VGA MW SpC F                   | BM Mem ID 0x00                                    | pe<br>Multi-fun |
| UXUUUB TOD SENT Wat TE VOX MWW SPC I                              |                                                   | maideran        |
| Status                                                            | BIST                                              |                 |
| 0x0010 PE SE MA TA SA fast DPE B2B                                | user 66 MHz 0x00 BI                               | ST capab        |
| Base address registers                                            | Expansion RDM                                     | _               |
| 0 0xF740000C to 0xF77FFFFF Mem Pre 64-bit View                    |                                                   | En              |
| 1 Mem Pre 64-bit View                                             | PCI-PCI bridge                                    | Diagn           |
| 2                                                                 | Primary Bus                                       | Diagn           |
|                                                                   |                                                   | <u>S</u> a      |
|                                                                   |                                                   | Ц.              |
| 4 <u>1/0 Pre</u> View                                             |                                                   | He              |
| 5 <u>1/0</u> Pre <u>View</u>                                      | Bridge Ctrl                                       | 0               |
| - PCIe Device Capability                                          |                                                   | -               |
|                                                                   | ed Gen 1                                          |                 |
| Maximum payload size supported (bytes) 256 Link Spee              | 2111 1 1 M M                                      |                 |
|                                                                   | d Link Width 8 lanes                              |                 |

Figure 7: PCI Diagnostic Program

Clicking on the **Diagnostic** button opens a new window with the diagnostic report. From the PCI Bus Number drop menu select the bus number that the X64 Xcelera-HS PX8 is installed in—in this example the slot is bus 1.

The window now shows the I/O and memory ranges used by each device on the selected PCI bus. The information display box will detail any PCI conflicts. If there is a problem, click on the **Save** button. A file named '**pcidiag.txt**' is created (in the Sapera\bin directory) with a dump of the PCI configuration registers. Email this file when requested by the Teledyne DALSA Technical Support group along with a full description of your computer.

| PCI bas                                                                     | I/O range                                              |
|-----------------------------------------------------------------------------|--------------------------------------------------------|
| Boe 4 ▼<br>Range<br>1/0: 0x00000000-0x00000000<br>Mem: 0xfbb00000-0xfbbffff | Memory range                                           |
| Pref: 0x00000000f7400000-0x00000000                                         | 00000000f7400000-00000000f77fffff Teledyne DALSA (4, 0 |
|                                                                             | <u>1</u>                                               |
| 1 2 1 7 V 2 1 1                                                             |                                                        |
| nformation<br>No conflict in PCI configuration for bus 4.                   |                                                        |

Figure 8: PCI Diagnostic Program – PCI bus info

## Windows Device Manager

An alternative method to confirm that the X64 Xcelera-HS PX8 board and drive is installed correctly is to use the Windows Device manager tool. Use the Start Menu shortcut **Start** • **Control Panel** • **System** • **Hardware** • **Device Manager**. As shown in the following screen images, look for *X64 Xcelera-HS PX8* board under "Imaging Devices". Double-click and look at the device status. You should see "This device is working properly." Go to "Resources" tab and make certain that the device is mapped and has an interrupt assigned to it, without any conflicts.

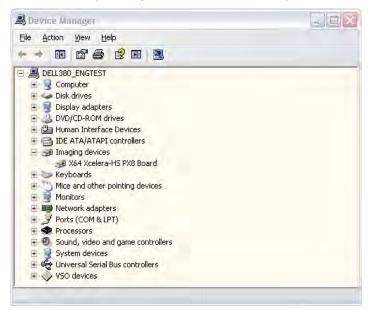



Figure 9: Using Windows Device Manager

### **GEN2 Slot Computer Issue**

Teledyne DALSA engineering has identified cases where the X64 Xcelera-HS PX8 board is not detected when installed in computers using the Intel 5400 chip set. This issue is identified by the status LED 1 flashing red continuously at boot time. By changing the switch SW500-2 position from the default 'OFF' to the 'ON' position before installing the Xcelera in the computer, the PCI error is eliminated. See the SW500: Normal/Safe Boot Mode & GEN2 Slot Workaround section for details.

## **BSOD (blue screen) Following a Board Reset**

Teledyne DALSA engineering has identified cases where a PC will falsely report a hardware malfunction when the X64 Xcelera-HS PX8 board is reset. The symptoms will be a Windows blue screen or PC that freezes following a board reset. The solution to this problem is to install the driver using the switch "/cr", indicating to the driver that a reset of the board must not be allowed and that a reboot of the computer is needed instead.

• Example: X64\_Xcelera-HS\_PX8\_1.00.00.0000.exe /cr

#### **Sapera and Hardware Windows Drivers**

If any problem is seen after installation, such as an error message running CamExpert, make certain the appropriate Teledyne DALSA drivers have started successfully during the boot sequence. Example, click on the Start • All Programs • Accessories • System Tools • System Information • Software Environment and click on System Drivers. Make certain the following drivers have started for the X64 Xcelera-HS PX8.

Table 4: Xcelera-HS PX8 Device Drivers

| Device             | Description                  | Туре          | Started |
|--------------------|------------------------------|---------------|---------|
| CorX64XceleraHSPX8 | X64 Xcelera-HS PX8 messaging | Kernel Driver | Yes     |
| CorLog             | Sapera Log viewer            | Kernel Driver | Yes     |
| CorMem             | Sapera Memory manager        | Kernel Driver | Yes     |
| CorPci             | Sapera PCI configuration     | Kernel Driver | Yes     |
| CorSerial          | Sapera Serial Port manager   | Kernel Driver | Yes     |

Teledyne DALSA Technical Support may request that you check the status of these drivers as part of the troubleshooting process.

## **Recovering from a Firmware Update Error**

This procedure is required if any failure occurred while updating the X64 Xcelera-HS PX8 firmware on installation or during a manual firmware upgrade. On the rare occasion the board has corrupted firmware, any Sapera application such as CamExpert or the grab demo program will not find an installed board to control.

Possible reasons for firmware loading errors or corruption are:

- Computer system mains power failure or deep brown-out.
- PCI bus or checksum errors.
- PCI bus timeout conditions due to other devices.
- User forcing a partial firmware upload using an invalid firmware source file.

When the X64 Xcelera-HS PX8 firmware is corrupted, executing a manual firmware upload will not work because the firmware loader cannot communicate with the board. In an extreme case, corrupted firmware may even prevent Windows from booting.

*Solution*: The user manually forces the board to initialize from 'safe' firmware designed only to allow driver firmware uploads. When the firmware upload is complete, the board is then rebooted to initialize in its normal operational mode.

- Note that this procedure may require removing the X64 Xcelera-HS PX8 board several times from the computer.
- *Important*: Referring to the board's user manual (in the connectors and jumpers reference section), identify the configuration switch location. The Boot Recovery Mode switch for the X64 Xcelera-HS PX8 is SW500-1,
  - (see the SW500: Normal/Safe Boot Mode & GEN2 Slot Workaround section).
- Shut down Windows and power OFF the computer.
- Move the switch SW500-1 to ON, for the boot recovery mode position. (The default position is SW500-1 to OFF for normal operation).
- Power on the computer. Windows will boot normally.
- When Windows has started, do a manual firmware update procedure to update the firmware again (see the Executing the Firmware Loader from the Start Menu section).
- When the update is complete, shut down Windows and power off the computer.
- Set the SW500-1 switch back to the OFF position (i.e. default position) and power on the computer once again.
- Verify that the frame grabber is functioning by running a Sapera application such as CamExpert. The Sapera application will now be able to communicate with the X64 Xcelera-HS PX8 board.

#### **Driver Information via the Device Manager Program**

The Device Manager program provides a convenient method of collecting information about the installed X64 Xcelera-HS PX8. System information such as operating system, computer CPU, system memory, PCI configuration space, plus X64 Xcelera-HS PX8 firmware information can be displayed or written to a text file (default file name – BoardInfo.txt). Note that this program is also used to manually upload firmware to the X64 Xcelera-HS PX8 (described elsewhere in this manual).

Execute the program via the Windows Start Menu shortcut **Start • All Programs • Teledyne DALSA • X64 Xcelera-HS PX8 Device Driver • Device Manager**. If the Device Manager program does not run, it will exit with a message that the board was not found. Since the X64 Xcelera-HS PX8 board must have been in the system to install the board driver, possible reasons for an error are:

- Board was removed
- Board driver did not start or was terminated
- PCI conflict after some other device was installed

#### **Information Window**

The following figure shows the Device Manager information screen. Click to highlight one of the board components and the information for that item is shown on the right hand window, as described below.

| <u>File</u> <u>T</u> ools | <u>H</u> elp    |       |                         |          |      |
|---------------------------|-----------------|-------|-------------------------|----------|------|
| Device Info Ma            | anager          |       |                         |          |      |
| Program                   | Refresh f       | Reset |                         |          |      |
| Device                    |                 | [i    | nformation              |          |      |
|                           |                 | Ē     | Field                   | Value    |      |
|                           |                 |       | Template version        | 3        |      |
|                           |                 | 1     | Drawing Number          | 2570     |      |
|                           |                 | ī     | ssue                    | A        | É    |
|                           |                 | F     | Revision                | 1        |      |
|                           |                 | N     | /endor ID               | 0x11EC   |      |
|                           |                 | ī     | _ast ECO                | 6990     |      |
|                           |                 | (     | CMI                     | 0x0000   |      |
|                           |                 | E     | Extension               | 0        |      |
|                           |                 | 9     | Serial Number           | S4567005 |      |
|                           |                 | 0     | Component Version       | 0        |      |
|                           |                 | 0     | Optional ECO            | 0x0      |      |
| - Barrie                  | 5 U.V.          | to to | Nida Tinana laka Wandan | E        | - 27 |
| Device Info               | Firmware Update |       |                         |          |      |
| Output                    |                 |       |                         |          |      |
| 1                         |                 |       |                         |          | 2    |
|                           |                 |       |                         |          |      |
|                           |                 |       |                         |          |      |
|                           |                 |       |                         |          |      |
|                           |                 |       |                         |          |      |
|                           |                 |       |                         |          | -    |

Figure 10: Board Firmware Version

- Select **Information** to display identification and information stored in the X64 Xcelera-HS PX8 firmware.
- Select **Firmware** to display version information for the firmware components.
- Select one of the firmware components to load *custom* firmware when supplied by Teledyne DALSA engineering for a future feature.
- Click on **File Save Device Info** to save all information to a text file. Email this file when requested by Technical Support.

## **Teledyne DALSA Log Viewer**

The third step in the verification process is to save in a text file the information collected by the Log Viewer program. Run the program via the Windows Start Menu shortcut **Start • All Programs** • **Teledyne DALSA • Sapera LT • Tools • Log Viewer**.

The Log Viewer lists information about the installed Teledyne DALSA drivers. Click on File • Save and you will be prompted for a text file name to save the Log Viewer contents. Email this text file to Teledyne DALSA Technical Support when requested or as part of your initial contact email.

### **Memory Requirements with Area Scan Acquisitions**

The X64 Xcelera-HS PX8 allocates by default two frame buffers in onboard memory, each equal in size to the acquisition frame buffer. This double buffering memory allocation is automatic at the driver level. The X64 Xcelera-HS PX8 driver uses two buffers to ensure that the acquired video frame is complete and not corrupted in cases where the image transfer to host system memory may be interrupted and delayed by other host system processes. That is, the image acquisition to one frame buffer is not interrupted by any delays in transfer of the other frame buffer (which contains the previously acquired video frame) to system memory.

The total size of the two internal frame buffers must be somewhat smaller than the total onboard memory due to memory overhead required for image transfer management. When the X64 Xcelera-HS PX8 does not have enough onboard memory for two frame buffers, the driver memory manager will reduce the size in increments of video lines for the 2 buffers, to the maximum that can fit.

Note that in this situation, it is best to specify a single on-board buffer in order to increase the size of image that can be buffered on-board before a video line wraparound occurs during the acquisition. In this specific situation the image transfers to the host memory buffer can not take advantage of a dual on-board buffer during image transfer, therefore the image transfer is subject to PCIe bandwidth limitations.

#### Symptoms: CamExpert Detects no Boards

• When starting CamExpert, if no Teledyne DALSA board is detected, CamExpert will start in offline mode. There is no error message and CamExpert is functional for creating or modifying a camera configuration file. If CamExpert should have detected the installed board, troubleshoot the installation problem as described below.

#### **Troubleshooting Procedure**

When CamExpert detects no installed Teledyne DALSA board, there could be a hardware problem, a PnP problem, a PCI problem, a kernel driver problem, or a software installation problem.

- Make certain that the card is properly seated in PCIe slot.
- Perform all installation checks described in this section before contacting Technical Support.
- Try the board in a different PCIe slot if available.

## Symptoms: X64 Xcelera-HS PX8 Does Not Grab

You are able to start Sapera CamExpert but do not see an image and the frame rate displayed is 0.

- Verify power is connected to the camera.
- Verify the camera and timing parameters with the camera in free run mode.
- Verify you can grab with the camera in free run mode.
- Make certain that you provide an external trigger if the camera configuration file requires one. Use the software trigger feature of CamExpert if you do not have a trigger source.
- Make certain that the camera is properly connected to the cable.
- Make certain that the camera is configured for the proper mode of operation. This must match the camera configuration file. Refer to your camera datasheet.
- Try to snap one frame instead of continuous grab.
- Perform all installation checks described in this section before contacting Technical Support.
- Use the Sapera Monitor tool to see which events (if any) are generated by the board.

### Symptoms: Card grabs black

You are able to use Sapera CamExpert, the displayed frame rate is as expected, but the display is always black.

- Set your camera to manual exposure mode and set the exposure to a longer period, plus open the lens iris.
- Try to snap one frame instead of continuous grab.
- This problem is sometimes caused by a PCIe transfer issue. No PCIe transfer takes place, so the frame rate is above 0 but nevertheless no image is displayed in CamExpert.
- Make certain that BUS MASTER bit in the PCIe configuration space is activated. Look in PCI Diagnostics for **BM** button under "Command" group. Make certain that the **BM** button is activated.

|     | PCI device                               |                               |                                     |                                       |
|-----|------------------------------------------|-------------------------------|-------------------------------------|---------------------------------------|
|     | X64 Xcelera-HS PX8 from Teledyne DALSA ( | bus 4, slot 0, function 💌 🕴 🛙 | evice enabled Reso                  | can devices Refr                      |
|     | Vendor ID 0x11EC Rev. ID 0x01            | Latency Ox00                  | Hex dump addr 0                     |                                       |
|     | Device ID 0x2570 IntLine 0x10            | Min Grant 0x00                | 8-bit 0x00> 0x2<br>16-bit 0x04> 0x0 | 0100000                               |
|     | lourou louro                             | Loudo.                        | 1 22 bit 0x08> 0x0                  | 5800001                               |
|     | Touroood Touroi                          | lance                         | Edit 0x0C> 0x0                      |                                       |
|     | lancee lancee                            | Class Code 0x058000           |                                     |                                       |
|     | Command                                  | the set of the                | Annual I                            | Header type                           |
|     | 0x0006 FBB SERR Wait PE                  | VGA MW SpC BM                 | Mem <u>IO</u>                       | 0x00 Multi-func                       |
|     | Status                                   | ~                             | B                                   | ST                                    |
|     | 0x0010 PE SE MA TA SA                    | fast DPE B2B u                | iser 66 MHz Dx                      | 00 BIST capable                       |
|     | Contraction in the second                |                               |                                     |                                       |
|     | Base address registers                   |                               | Expansion RDM                       | Enat                                  |
|     | 0 0xF740000C to 0xF77FFFFF M             | em Pre 64-bit View            | 1                                   | Liidi                                 |
|     | 1 M                                      | em Pre 64-bit View            | PCI-PCI bridge                      | Diagno                                |
|     | 2                                        | O Pre ···· ///ew              | Primary Bus                         |                                       |
| 1   | 3 [ 1/                                   | 0 Pre - View                  | Second. Bus                         | <u>Save</u>                           |
|     |                                          | 0 Pre View                    | Subord. Bus                         | Help                                  |
| 100 |                                          |                               |                                     |                                       |
|     | 5 1/                                     | 0 Pre View                    | Bridge Ltri                         | OK.                                   |
| -   | 1. D                                     |                               |                                     |                                       |
| -   | PCIe Device Capability                   |                               |                                     |                                       |
| -   |                                          | 256 Link Speed                | Ger                                 | 1                                     |
| -   | PCIe Device Capability                   | 256 Link Speed                | 1000                                | · · · · · · · · · · · · · · · · · · · |

Figure 11: PCI Diagnostic – checking the BUS Master bit

• Perform all installation checks described in this section before contacting Technical Support.

## Symptoms: Card acquisition bandwidth is less than expected

The X64 Xcelera-HS PX8 acquisition bandwidth is less than expected.

- Review the system for problems or conflicts with other expansion boards or drivers.
- Remove other PCI Express, PCI-32 or PCI-64 boards and check acquisition bandwidth again. Engineering has seen this case where other PCI boards in some systems cause limitations in transfers. Each system, with its combination of system motherboard and PCI boards, will be unique and will need to be tested for bandwidth limitations affecting the imaging application.
- Is the X64 Xcelera-HS PX8 installed in a PCI Express x16 slot? Note that some computer's x16 slot may only support non x16 boards at x1 or not at all. Check the computer documentation or test an X64 Xcelera-HS PX8 installation.

# **CamExpert Quick Start**

## **Interfacing Cameras with CamExpert**

CamExpert is the camera interfacing tool for frame grabber boards supported by the Sapera library. CamExpert generates the Sapera camera configuration file (*yourcamera.ccf*) based on timing and control parameters entered. For backward compatibility with previous versions of Sapera, CamExpert also reads and writes the \*.cca and \*.cvi camera parameter files.

Every Sapera demo program starts by a dialog window to select a camera configuration file. Even when using the X64 Xcelera-HS PX8 with common video signals, a camera file is required. Therefore CamExpert is typically the first Sapera application run after an installation. Obviously existing .ccf files can be copied to the new installation when similar cameras are used.

## **CamExpert Example with a Teledyne DALSA HS Camera**

The image below shows CamExpert controlling the X64 Xcelera-HS PX8. The camera outputs monochrome 8-bit video on an HS-Link interface. After selecting the camera model, the timing parameters are displayed and the user can test by clicking on *Grab*. Descriptions of the CamExpert window follow the image.

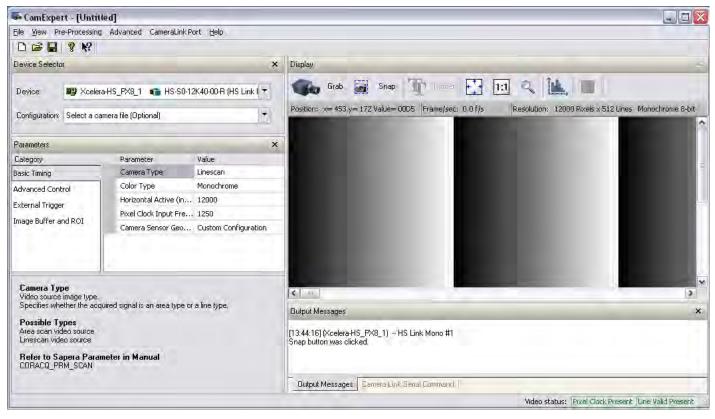



Figure 12: CamExpert Program

CamExpert groups parameters into functional categories. The parameters shown depend on the frame grabber used and what camera is connected. The parameter values are either the camera defaults or the last stored value when the camera was used. The descriptions below are with the Xcelera-HS PX8 and the Teledyne DALSA HS camera.

- Device Selector: Two drop menus to select which device and which saved configuration to use.
  - **Device**: Select which acquisition device to control and configure a camera file for. Required in cases where there are multiple boards in a system and also when one board supports multiple acquisition types. Note in this example, the X64 Xcelera-HS PX8 was installed with firmware to support a monochrome HS-Link cameras.
  - **Configuration**: Select the timing for a specific camera model included with the Sapera installation or a standard video standard. The *User's* subsection is where created camera files are stored.
- **Parameter Groups**: Select a function category and change parameter values as required. Descriptions for the camera parameters change dependent on the camera.
  - **Basic Timing group**: Basic parameters used to define the timing of the camera. Select the Camera Type, Color Mode, Horizontal active resolution, Vertical Resolution (for area scan sensors), Pixel Clock frequency, Camera sensor readout type, etc. dependent on the camera selected. This group is sufficient to configure a free-running camera.
  - Advanced Controls: Advanced parameters used to configure camera control mode and strobe output.
  - **External Trigger**: Parameters to configure the external trigger characteristics.
  - Image Buffer and ROI: Control of the host buffer dimension and format.
- **Display**: An important component of CamExpert is its live acquisition display window which allows immediate verification of timing or control parameters without the need to run a separate acquisition program. **Grab** starts continuous acquisition (button then toggles to **Freeze** to stop). **Snap** is a single frame grab. **Trigger** is a software trigger to emulate an external source.
- **Output Messages and Video Status Bar**: Events and errors are logged for review. Camera connection status is displayed where green indicates signal present.
- **Camera Link Serial Command**: Select this Tab to open a serial command port to the camera. This allows the user to issue configuration commands if supported by the camera. Teledyne DALSA HS-Link cameras support serial port commands, such as H to get a list of supported commands or GCP to get current camera parameters.

For context sensitive help click on the key button then click on a camera configuration parameter.

A short description of the configuration parameter will be shown in a popup. Click on the volume vol

# **CamExpert Demonstration and Test Tools**

The CamExpert utility also includes a number of demonstration features which make CamExpert the primary tool to configure, test and calibrate your camera and imaging setup. Display tools include, image pixel value readout, image zoom, and line profiler.

Functional tools include hardware Flat Field calibration and operation support, (see the X64 Xcelera-HS PX8 Flat Field/Flat Line Support section).

### **Camera Types & Files**

The X64 Xcelera-HS PX8 supports digital area scan or line scan cameras using the HS-Link interface standard. Contact Teledyne DALSA or browse our web site [http://www.teledynedalsa.com/imaging/support/] for the latest information and application notes on X64 Xcelera-HS PX8 supported cameras.

#### Camera Files Distributed with X64 Xcelera-HS PX8 driver

The X64 Xcelera-HS PX8 driver includes 3 camera configuration files for the Piranha HS 12k that describes one Master frame grabber and 2 Slave frame grabbers.

#### **Camera Files Distributed with Sapera**

The Sapera distribution CDROM includes camera files for a selection of supported cameras. Using the Sapera CamExpert program, you may use the camera files (CCA) provided to generate a camera configuration file (CCF) that describes the desired camera and frame grabber configuration.

Teledyne DALSA continually updates a camera application library composed of application information and prepared camera files, ready to download. Camera files are ASCII text and can be read with Windows Notepad on any computer without having Sapera installed.

### **Overview of Sapera Acquisition Parameter Files (\*.ccf or \*.cca/\*.cvi)**

#### **Concepts and Differences between the Parameter Files**

There are two components to the legacy Sapera acquisition parameter file set: CCA files (also called cam-files) and CVI files (also called VIC files, i.e. video input conditioning). **Sapera LT 5.0** introduces a new camera configuration file (**CCF**) that combines the CCA and CVI files into one file.

Typically, a camera application will use a CCF file per camera operating mode. An application can also have multiple CCF files so as to support different image format modes supported by the camera or sensor (such as image binning or variable ROI).

#### **CCF File Details**

Files using the ".CCF" extension, (Camera Configuration files), are essentially the camera (CCA) and frame grabber (CVI) parameters grouped into one file for easier configuration file management. This is the default Camera Configuration file used with Sapera LT 5.0 and the CamExpert utility.

#### **CCA File Details**

Teledyne DALSA distributes camera files using the legacy ".CCA" extension, (CAMERA files), which contain all parameters describing the camera video signal characteristics and operation modes (what the camera outputs). The Sapera parameter groups within the file are:

- Video format and pixel definition
- Video resolution (pixel rate, pixels per line, lines per frame)
- Synchronization source and timing
- Channels/Taps configuration
- Supported camera modes and related parameters
- External signal assignment

#### **CVI File Details**

Legacy files using the ".CVI" extension contain all operating parameters related to the frame grabber board – what the frame grabber can actually do with camera controls or incoming video. The Sapera parameter groups within the file are:

- Activate and set any supported camera control mode or control variable.
- Define the integration mode and duration.
- Define the strobe output control.
- Allocate the frame grabber transfer ROI, the host video buffer size and buffer type (RGB888, RGB101010, MONO8, MONO16).
- Configuration of line/frame trigger parameters such as source (internal via the frame grabber /external via some outside event), electrical format (TTL, RS-422, OPTO-isolated), and signal active edge or level characterization.

### Saving a Camera File

Use CamExpert to save a camera file (\*.ccf ) usable with any Sapera demo program or user application. An example would be a camera file which sets up parameters for a free running camera (i.e. internal trigger) with exposure settings for a good image with common lighting conditions.

When CamExpert is setup as required, click on **File**•**Save As** to save the new .ccf file. The dialog that opens allows adding details such as camera information, mode of operation, and a file name for the .ccf file. The following image is a sample for a Teledyne DALSA HS-Link camera. Note the default folder where user camera files are saved.

| Save Camera file     |                                       | X |
|----------------------|---------------------------------------|---|
| Camera Configuration | Description                           |   |
| Company Name:        | DALSA                                 |   |
| Model Name:          | HS                                    |   |
| Camera Mode:         | Default HS Link Line Scan 5 taps Mono |   |
| Configuration:       | Default HS Link Line Scan 5 taps Mono |   |
| File Information     |                                       |   |
| File name:           | D_HS_Default_Default                  |   |
| Save as              | Camera configuration file (.ccf)      |   |
| Current              | C:\DALSA\Sapera\CamFiles\User         |   |
|                      | Select Custom Directory Browse        |   |
|                      |                                       |   |
|                      | Save Cancel                           |   |

Figure 13: Saving a New Camera File (.ccf)

### **Camera Interfacing Check List**

Before interfacing a camera from scratch with CamExpert:

- Confirm that Teledyne DALSA has not already published an application note with camera files [<u>http://www.teledynedalsa.com/imaging/support/</u>].
- Confirm that the correct version or board revision of X64 Xcelera-HS PX8 is used. Confirm that the required firmware is loaded into the X64 Xcelera-HS PX8.
- Confirm that Sapera does not already have a .cca file for your camera installed on your hard disk. If there is a .cca file supplied with Sapera, then use CamExpert to automatically generate the .ccf file with default parameter values matching the frame grabber capabilities.
- Check if the Sapera installation has a similar type of camera file. A similar .cca file can be loaded into CamExpert where it is modified to match timing and operating parameters for your camera, and lastly save them as Camera Configuration file (.ccf).
- Finally, if your camera type has never been interfaced, run CamExpert after installing Sapera and the acquisition board driver, select the board acquisition server, and manually enter the camera parameters.

# X64 Xcelera-HS PX8 Flat Field/Flat Line Support

The X64 Xcelera-HS PX8 supports hardware based real-time Flat Field Correction. The default firmware supports 8 bit flat field correction. If required, 12 bit flat field correction firmware is also available. See the User Programmable Configurations section for information on driver versions.

Flat Field Correction is the process of eliminating small gain differences between pixels in a sensor array. That sensor when exposed to a uniformly lit field will have no gray level differences between pixels when applying the calibrated flat field correction to the image. The CamExpert Flat Field tool functions with hardware supporting flat field processing.

#### Loading the Required Camera File

Select the required camera configuration file for the connected camera. Verify the acquisition with the live grab function. Make camera adjustments to get good images.

### Set up Dark and Bright Acquisitions with the Histogram Tool

Before performing calibration, verify the acquisition with a live grab. Also at this time, make preparations to grab a flat light gray level image, required for the calibration, such as a clean evenly lighted white wall or non-glossy paper with the lens slightly out of focus. Ideally, a controlled diffused light source aimed directly at the lens is used. Note the lens iris position for a bright but not saturated image. Additionally check that the lens iris closes well or have a lens cover to grab the dark calibration image.

#### Verify a Dark Acqu; isition

Close the camera lens iris and cover the lens with a lens cap. Using CamExpert, click on the grab button and then the histogram button. The following figure shows a typical histogram for a very dark image.

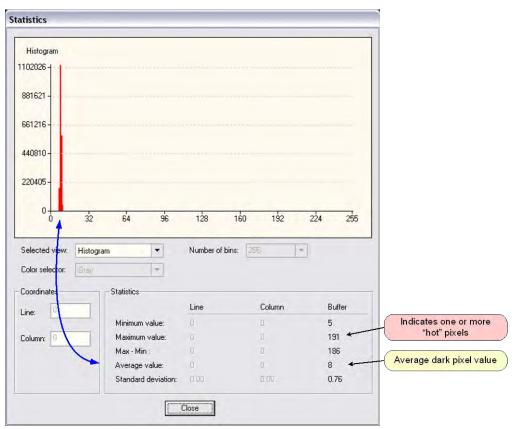



Figure 14: Flat Field - Verify a Dark Acquisition

0

**Important**: In this example, the **average** pixel value for the frame is close to black. Also, note that most sensors will show a much higher maximum pixel value due to one or more "hot pixels". The sensor specification accounts for a small number of hot or stuck pixels (pixels that do not react to light over the full dynamic range specified for that sensor).

#### Verify a Bright Acquisition

Aim the camera at a diffused light source or evenly lit white wall with no shadows falling on it. Using CamExpert, click on the grab button and then the histogram button. Use the lens iris to adjust for a bright gray approximately around a pixel value of 200 (for 8-bit pixels). The following figure shows a typical histogram for a bright gray image.

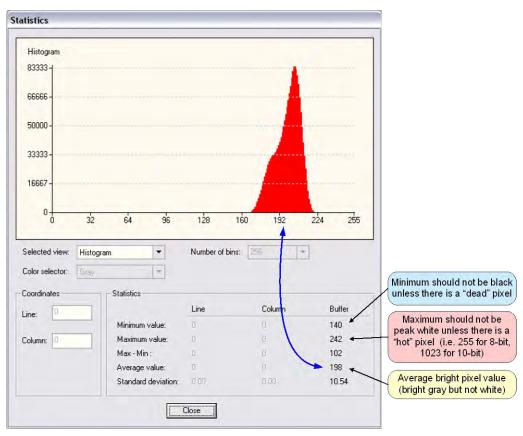



Figure 15: Flat Field - Verify a Bright Acquisition



**Important**: In this example, the **average** pixel value for the frame is bright gray. Also, note that sensors may show a much higher maximum or a much lower minimum pixel value due to one or more "hot or dead pixels". The sensor specification accounts for a small number of hot, stuck, or dead pixels (pixels that do not react to light over the full dynamic range specified for that sensor).

Once the bright gray acquisition setup is done, note the camera position and lens iris position so as to be able to repeat it during the calibration procedure.

### **Flat Field Correction Calibration Procedure**

Calibration is the process of taking two reference images, one of a black field – one of a light gray field (not saturated), to generate correction data for images captured by the camera. Each camera pixel data is modified by the correction factor generated by the calibration process, so that each pixel now has an identical response to the same illumination.

Start the Flat Field calibration tool via the CamExpert menu bar:

#### Tools • Flat Field Correction • Calibration.

#### **Flat Field Calibration Window**

The Flat Field calibration window provides a three-step process to acquire two reference images and then save the flat field correction data for the camera used. To aid in determining if the reference images are valid, use the histogram tool to review the images used for the correction data.

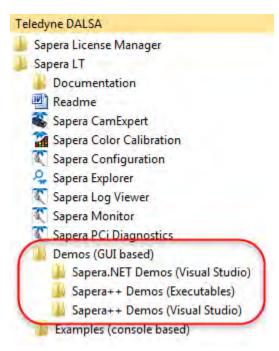
| Field Correc                                     | tion                              | -                          |                                  |             |            |         | -   | Ļ   |
|--------------------------------------------------|-----------------------------------|----------------------------|----------------------------------|-------------|------------|---------|-----|-----|
| No Image to<br>1000 -<br>800 -<br>600 -<br>400 - | i display a l                     | nistogram fi               | rom:                             |             |            |         |     |     |
| 200-0-0-0                                        | 32                                | 64                         | 96                               | 128         | 160        | 192     | 224 | 255 |
| Step 2: Active (W                                | equíre a brig<br>e recomme<br>Acc | end an ave<br>quire Bright | must not b<br>rage gray<br>Image | level pixel | value abov | ve 64.) |     |     |
| Advanced                                         |                                   |                            |                                  |             |            |         |     |     |
| Ready for ca                                     | alibration.                       |                            |                                  |             |            |         |     |     |
|                                                  |                                   |                            |                                  |             |            |         |     |     |

Figure 16: Flat Field – Calibration Application

- Setup the camera to capture a uniform black image. Black paper with no illumination and the camera lens' iris closed to minimum can provide such a black image.
- Click on **Acquire Black Image**. The flat field demo will grab a video frame, analyze the pixel gray level spread, and present the statistics. The desired black reference image should have pixel values less than 20. If acceptable, accept the image as the black reference.

- Setup the camera to acquire a uniform white image (but not saturated white). Even illumination on white paper is acceptable, to provide a gray level of 128 minimum. It is preferable to prepare for the white level calibration before the calibration procedure as described in the previous section.
- Click on **Acquire White Image**. The flat field demo will grab a video frame, analyze the pixel gray level spread, and present the statistics. The captured gray level for all pixels should be greater than 128. If acceptable, accept the image as the white reference.
- Click on **Save**. The flat field correction data, saved as a TIF image, is given a file name of your choice (such as camera name and serial number).

### **Using Flat Field Correction**


From the CamExpert menu, enable Flat Field correction

(Tools • Flat Field Correction • Enable). Now when doing a live grab or snap, the incoming image is corrected by the current flat field calibration data for each pixel.

Use the menu function **Tools** • **Flat Field Correction** • **Load** to load in a flat field correction image from a previous saved calibration data. CamExpert allows saving and loading calibration data for all cameras used with the imaging system.

# **Sapera Demo Applications**

All demos are available through the Start menu.



# **Grab Demo Overview**

The Grab Demo program demonstrates the basic acquisition functions included in the Sapera library. The program either allows you to acquire images, in continuous or in one-time mode, while adjusting the acquisition parameters. The program code may be extracted for use within your own application.

The Grab Demo is available as a compiled binary; source code is provided for both C++ and .NET projects using Visual Studio 2005/2008/2010/2012/2013/2015.

| Program<br>file         | \\Sapera\Demos\Binaries\GrabDemo.exe                                                                                                                                                                                                                                                   |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Visual C++<br>Solution  | \\Sapera\Demos\Classes\Vc\SapDemos_2005.sln<br>\\Sapera\Demos\Classes\Vc\SapDemos_2008.sln<br>\\Sapera\Demos\Classes\Vc\SapDemos_2010.sln<br>\\Sapera\Demos\Classes\Vc\SapDemos_2012.sln<br>\\Sapera\Demos\Classes\Vc\SapDemos_2013.sln<br>\\Sapera\Demos\Classes\Vc\SapDemos_2015.sln |
| Visual .NET<br>Solution | \\Sapera\Demos\NET\SapDemos_2005.sIn<br>\\Sapera\Demos\NET\SapDemos_2008.sIn<br>\\Sapera\Demos\NET\SapDemos_2010.sIn<br>\\Sapera\Demos\NET\SapDemos_2012.sIn<br>\\Sapera\Demos\NET\SapDemos_2013.sIn<br>\\Sapera\Demos\NET\SapDemos_2015.sIn                                           |
| Remarks                 | This demo is based on Sapera LT classes. See the Sapera User's and Reference manuals for more information.                                                                                                                                                                             |

Table 5: Grab Demo Workspace Details

## Using the Grab Demo

#### **Server Selection**

#### Run the grab demo from the start menu: Start•Programs•Sapera LT•Demos (GUI based)•Sapera++ Demos•GrabDemo.exe

The demo program first displays the acquisition configuration menu. The first drop menu displayed permits selecting from any installed Sapera acquisition servers (installed Teledyne DALSA acquisition hardware using Sapera drivers). The second drop menu permits selecting from the available input devices present on the selected server.

#### **CCF File Selection**

Use the acquisition configuration menu to select the required camera configuration file for the connected camera. Sapera camera files contain timing parameters and video conditioning parameters. The default folder for camera configuration files is the same used by the CamExpert utility to save user generated or modified camera files.

Use the Sapera CamExpert utility program to generate the camera configuration file based on timing and control parameters entered. The CamExpert live acquisition window allows immediate verification of those parameters. CamExpert reads both Sapera \*.cca and \*.cvi for backward compatibility with the original Sapera camera files.

#### Grab Demo Main Window

The Grab Demo program provides basic acquisition control for the selected frame grabber. The loaded camera file (.ccf) defines the Frame buffer defaults.

Refer to the Sapera LT User's Manual (OC-SAPM-USER), in section "Demos and Examples – Acquiring with Grab Demo", for more information on the Grab Demo and others provided with Sapera LT.

# **Flat-Field Demo Overview**

This program demonstrates Flat Field or Flat Line processing, either performed by supporting Teledyne DALSA hardware or performed on the host system via the Sapera library. The program allows you to acquire a flat field or flat line reference image, and then do real time correction either in continuous or single acquisition mode. The program code may be extracted for use within your own application.

| Program<br>file         | \\Sapera\Demos\Binaries\FlatfieldDemo.exe                                                                                                                                                                                                                                              |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Visual C++<br>Solution  | \\Sapera\Demos\Classes\Vc\SapDemos_2005.sln<br>\\Sapera\Demos\Classes\Vc\SapDemos_2008.sln<br>\\Sapera\Demos\Classes\Vc\SapDemos_2010.sln<br>\\Sapera\Demos\Classes\Vc\SapDemos_2012.sln<br>\\Sapera\Demos\Classes\Vc\SapDemos_2013.sln<br>\\Sapera\Demos\Classes\Vc\SapDemos_2015.sln |
| Visual .NET<br>Solution | \\Sapera\Demos\NET\SapDemos_2005.sIn<br>\\Sapera\Demos\NET\SapDemos_2008.sIn<br>\\Sapera\Demos\NET\SapDemos_2010.sIn<br>\\Sapera\Demos\NET\SapDemos_2012.sIn<br>\\Sapera\Demos\NET\SapDemos_2013.sIn<br>\\Sapera\Demos\NET\SapDemos_2015.sIn                                           |
| Remarks                 | This demo is based on Sapera LT classes. See the Sapera User's and Reference manuals for more information.                                                                                                                                                                             |

### **Using the Flat Field Demo**

Refer to the Sapera LT User's Manual (OC-SAPM-USER), in section "Using the Flat Field Demo", for more information.

# X64 Xcelera-HS PX8 Reference

# **Block Diagram**

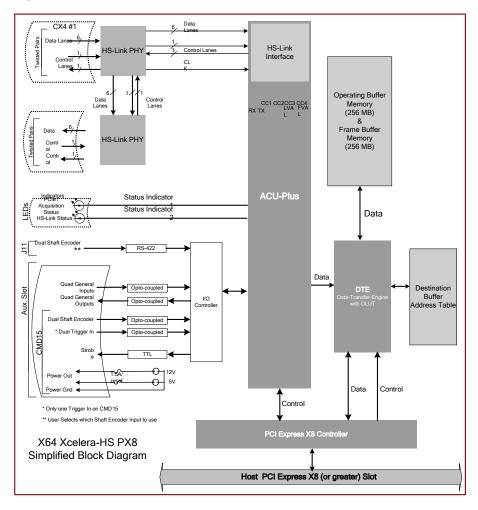



Figure 17: Block Diagram

# **Acquisition Timing**

For more information on the HSLink acquisition timing specification refer to information available on the the Teledyne DALSA website:

www.teledynedalsa.com/imaging/knowledge-center/appnotes/hslink/

# Line Trigger Source Selection for Linescan Applications

Line scan imaging applications require some form of external event trigger to synchronize line scan camera exposures to the moving object. This synchronization signal is either an external trigger source (one exposure per trigger event) or a shaft encoder source composed of a single or dual phase ((also known as a Quadrature) signal.

The X64 Xcelera-HS PX8 shaft encoder inputs provide additional functionality with pulse drop or pulse multiply support along with error trapping event notifications such as "*External Line Trigger Too Fast*" (see the Supported Events and Transfer Methods section).

When using the shaft encoder signals, the user can choose to connect to the opto-coupled inputs or the RS-422/TTL inputs (which support a higher maximum pulse frequency). The imaging application chooses which shaft encoder input to use via a board parameter (described following the table below).

The following table describes the line trigger source types supported by the X64 Xcelera-HS PX8. Refer to the Sapera Acquisition Parameters Reference Manual (OC-SAPM-APR00) for descriptions of the Sapera parameters.

## CORACQ\_PRM\_EXT\_LINE\_TRIGGER\_SOURCE

The following table defines the trigger input source parameter values specific to the Xcelera-HS PX8.

| PRM Value | Active Shaft Encoder Input                                                   |
|-----------|------------------------------------------------------------------------------|
| 0         | Default                                                                      |
| 1         | Use phase A                                                                  |
| 2         | Use phase B                                                                  |
| 3         | Use phase A & B                                                              |
| 4         | From Board Sync                                                              |
| 5         | Phase A & B,<br>shaft encoder after pulse drop/multiply output to Board Sync |
| 6         | Phase A & B,<br>camera line trigger output to Board Sync                     |
| 7         | Phase A & B,<br>camera line trigger output to Board Sync only while grabbing |

Table 7: Line Trigger Source

# **CORACQ\_PRM\_EXT\_LINE\_TRIGGER\_SOURCE** full description relative to trigger type and X64 Xcelera-HS PX8 configuration used:

| PRM Value  | X64 Xcelera-HS PX8<br>configuration & camera<br>input used | Input used as:<br>External Line Trigger                           | Input used as:<br>External Shaft Encoder                       |
|------------|------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|
|            |                                                            | <i>if</i><br>CORACQ_PRM_EXT_LINE_<br>TRIGGER_ENABLE = <i>true</i> | <i>if</i><br>CORACQ_PRM_SHAFT_<br>ENCODER_ENABLE = <i>true</i> |
| 0          | Camera #1                                                  | Shaft Encoder Phase A                                             | Shaft Encoder Phase A & B                                      |
| 1          | Camera #1                                                  | Shaft Encoder Phase A                                             | Shaft Encoder Phase A                                          |
| 2          | Camera #1                                                  | Shaft Encoder Phase B                                             | Shaft Encoder Phase B                                          |
| 3, 5, 6, 7 | Camera #1                                                  | n/a                                                               | Shaft Encoder Phase A & B                                      |
| 4          | Camera #1                                                  | From Board Sync                                                   | From Board Sync                                                |

Table 8: CORACQ\_PRM\_EXT\_LINE\_TRIGGER\_SOURCE – Parameter Values

See the Connecting External Signals to the X64 Xcelera-HS PX8 section for shaft encoder input connector details.

#### **CVI/CCF File Parameters Used**

- External Line Trigger Source = prm value
- External Line Trigger Enable = true/false
- Shaft Encoder Source = X, where:
  - If X = 0, Shaft Encoder selection is done automatically by the driver. In this case, the opto-coupled input circuit is selected.
  - If X = 1, opto-coupled Shaft Encoder
  - If X = 2, RS-422 Shaft Encoder
- Shaft Encoder Enable = true/false

# **Shaft Encoder Interface & Timing**

#### **Dual Balanced Shaft Encoder Inputs:**

- Phase A
  - Connector J1: Pin 2 (Phase A +) & Pin 10 (Phase A -)
  - Connector J4: Pin 23 (Phase A +) & Pin 24 (Phase A -)
- Phase B
  - Connector J1: Pin 3 (Phase B+) & Pin 11 (Phase B-)
  - Connector J4: Pin 25 (Phase B +) & Pin 26 (Phase B -)
- For complete information on J1 see the J1: CMD15 Male External Signals Connector section.
- For complete information on J4 see the J4: External Signals Connector and External Signals Cabling Options for J4 sections.

#### **CVI/CCF File Parameters Used**

Shaft Encoder Enable = X, where:

- If X = 1, Shaft Encoder is enabled
- If X = 0, Shaft Encoder is disabled

**Shaft Encoder Pulse Drop** = X, where:

• X = number of trigger pulses ignored between valid triggers

Web inspection systems with variable web speeds typically provide one or two synchronization signals from a web mounted encoder to coordinate trigger signals. These trigger signals are used by the acquisition line scan camera. The X64 Xcelera-HS PX8 supports single or dual phase shaft encoder signals. Dual encoder signals are typically 90 degrees out of phase relative to each other and provide greater web motion resolution.

### Example using any Encoder Input with Pulse-drop Counter

When enabled, the camera is triggered and acquires one scan line for each shaft encoder pulse edge. To optimize the web application, a second Sapera parameter defines the number of triggers to skip between valid acquisition triggers. The figure below depicts a system where a valid camera trigger is any pulse edge from either shaft encoder signal. After a trigger the two following triggers are ignored (as defined by the Sapera pulse drop parameter).

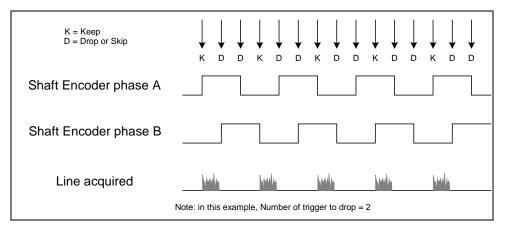



Figure 18: Encoder Input with Pulse-drop Counter



Note that camera file parameters are best modified by using the Sapera CamExpert program.

## **Example using Sequential Encoder Input**

Support of a dual phase encoder should consider the direction of motion of one phase signal to the other. Such a case might exist where system vibrations and/or conveyor backlash can cause the encoder to briefly travel backwards. The acquisition device must in those cases count the reverse steps and subtract the forward steps such that only pulses after the reverse count reaches zero are considered. By using the event "Shaft Encoder Reverse Counter Overflow", an application can monitor an overflow of this counter. Also, if one wants to trigger a camera at its maximum line rate using a high jitter shaft encoder, the parameter CORACQ\_PRM\_LINE\_TRIGGER\_AUTO\_DELAY can be used to delay automatically line triggers to the camera to avoid over-triggering a camera, and thus not miss a line. Note that some cameras integrate this feature. See also the event "Line Trigger Too Fast" that can be enabled when using the 'auto delay' feature.

The example figure below shows shaft encoder signals with high jitter. If the acquisition is triggered when phase B follows phase A, with jitter present phase B may precede phase A. Use of the *Shaft Encoder Direction* parameter will prevent false trigger conditions.

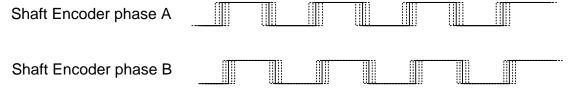



Figure 19: Using Shaft Encoder Direction Parameter

Note: Modify camera file parameters easily with the Sapera CamExpert program.

#### **CVI/CCF File Parameters Used**

Shaft Encoder Enable = X, where:

- If X = 1, Shaft Encoder is enabled
- If X = 0, Shaft Encoder is disabled

**Shaft Encoder Pulse Drop** = X, where:

• X = number of trigger pulses ignored between valid triggers

#### **Shaft Encoder Pulse Multiply** = X, where:

• X = number of trigger pulses generated for each shaft encoder pulses

#### **Shaft Encoder Direction** = X, where:

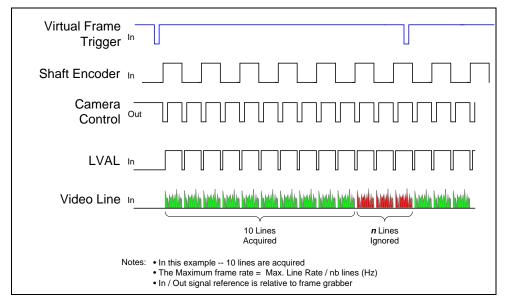
- X = 0, Ignore direction
- X = 1, Forward steps are detected by pulse order A/B (forward motion)
- X = 2, Forward steps are detected by pulse order B/A (reverse motion)



For information on camera configuration files see the Sapera Acquisition Parameters Reference Manual (OC-SAPM-APR00).

# Virtual Frame Trigger for Line Scan Cameras

When using line scan cameras a frame buffer is allocated in host system memory to store captured video lines. To control when a video line is stored as the first line in this "virtual" frame buffer, an external frame trigger signal is used. The number of lines sequentially grabbed and stored in the virtual frame buffer is controlled by the Sapera vertical cropping parameter.


## Virtual Frame Trigger Timing Diagram

The following timing diagram shows an example of grabbing 10 video lines from a line scan camera and the use of a virtual frame trigger to define when a video line is stored at the beginning of the virtual frame buffer. The virtual frame trigger signal (generated by some external event) is input on the X64 Xcelera-HS PX8 trigger input.

- Virtual frame trigger can be 24V industry standard, TTL 5V or RS-422 and be rising or falling edge active, active high or low, or double pulse rising or falling edge.
- Virtual frame trigger control is configured for rising edge trigger in this example.
- Virtual frame trigger connects to the X64 Xcelera-HS PX8 via the External Trigger Input 1 & 2 balanced inputs:
  - Trigger Input #1 on connector J1: pin 1 (+) and 9 (-)
  - Trigger Input #1 on connector J4: pin 19 (+) and pin 20 (-)
  - Trigger Input #2 on connector J4: pin 21 (+) and 22 (-) for input #2
- Camera control signals are output to the camera to trigger at all times in order to keep the camera running and avoid bad acquired lines at the beginning of a virtual frame.
- The camera control signals are either based on timing controls input on one or both X64 Xcelera-HS PX8 shaft encoder inputs or line triggers generated internally by the X64 Xcelera-HS PX8.
- The number of lines captured is specified by the Sapera vertical cropping parameter.

#### Synchronization Signals for a Virtual Frame of 10 Lines.

The following timing diagram shows the relationship between an External Frame Trigger input, External Shaft Encoder input (one phase used with the second terminated), and camera control output to the camera.



#### **CVI File (VIC) Parameters Used**

The VIC parameters listed below provide the control functionality for virtual frame reset. Applications either load pre-configured .cvi files or change VIC parameters directly during runtime.



Note that camera file parameters are best modified by using the Sapera CamExpert program.

**External Frame Trigger Enable** = X, where: (with Virtual Frame Trigger enabled)

- If X = 1, External Frame Trigger is enabled
- If X = 0, External Frame Trigger is disabled

External Frame Trigger Detection = Y, where: (with Virtual Frame Trigger edge select)

- If Y= 1, External Frame Trigger is active low
- If Y= 2, External Frame Trigger is active high
- If Y= 4, External Frame Trigger is active on rising edge
- If Y= 8, External Frame Trigger is active on falling edge
- If Y= 32, External Frame Trigger is dual-input rising edge
- If Y= 64, External Frame Trigger is dual-input falling edge

External Frame Trigger Level = Z, where:

• If Z= 2, External Frame Trigger is a RS-422 signal



For information on camera files see the Sapera Acquisition Parameters Reference Manual (OC-SAPM-APR00).

(with Virtual Frame Trigger signal type)

# **Sapera Acquisition Methods**

Sapera acquisition methods define the control and timing of the camera and frame grabber board. Various methods are available, grouped as:

- Camera Trigger Methods (method 1 and 2 supported)
- Camera Reset Methods (method 1 supported)
- Line Integration Methods (method 1 through 4, 7 supported)
- Time Integration Methods (method 1 through 9 supported)
- Strobe Methods (method 1 through 4 supported)

Refer to the Sapera LT Acquisition Parameters Reference manual (OC-SAPM-APR00) for detailed information concerning camera and acquisition control methods.

# **Trigger To Image Reliability**

Trigger-to-image reliability incorporates all stages of image acquisition inside an integrated controller to increase reliability and simplify error recovery. The trigger-to-image reliability model brings together all the requirements for image acquisition to a central management unit. These include signals to control camera timing, on-board FIFO memory to compensate for PCI bus latency, and comprehensive error notification. Whenever the X64 Xcelera-HS PX8 detects a problem, the user application is immediately informed and can take appropriate action to return to normal operation.

The X64 Xcelera-HS PX8 is designed with a robust ACU (Acquisition and Control Unit). The ACU monitors in real-time, the acquisition state of the input plus the DTE (Data Transfer Engine), which transfers image data from on-board FIFO memory into PC memory. In general these management processes are transparent to end-user applications. With the X64 Xcelera-HS PX8, applications ensure trigger-to-image reliability by monitoring events and controlling transfer methods as described below:

## **Supported Events and Transfer Methods**

The following acquisition and transfer events are supported. Event monitoring is a major component to the Trigger-to-Image Reliability framework.

#### **Acquisition Events**

Acquisition events are related to the acquisition module. They provide feedback on the image capture phase.

• External Trigger (Used/Ignored)

Generated when the external trigger pin is asserted, usually indicating the start of the acquisition process. There are 2 types of external trigger events: 'Used' or 'Ignored'. Following an external trigger, if the event generates a captured image, an External Trigger Used event will be generated (CORACQ\_VAL\_EVENT\_TYPE\_EXTERNAL\_TRIGGER). If there is no captured image, an External Trigger Ignored event will be generated (CORACQ\_VAL\_EVENT\_TYPE\_EXTERNAL\_TRIGGER). An external trigger event will be ignored if the rate at which the events are received are higher than the possible frame rate of the camera.

• Start of Frame

Event generated, during acquisition, when the start of a video frame is detected by the board acquisition hardware. The Sapera event value is CORACQ\_VAL\_EVENT\_TYPE\_START\_OF\_FRAME.

#### • End of Frame

Event generated, during acquisition, when the end of a video frame is detected by the board acquisition hardware. The Sapera event value is

CORACQ\_VAL\_EVENT\_TYPE\_END\_OF\_FRAME.

Data Overflow

The Data Overflow event indicates that there is not enough bandwidth for the acquired data to be transferred without loss. This is usually caused by limitations of the acquisition module and should never occur.

The Sapera event value is CORACQ\_VAL\_EVENT\_TYPE\_DATA\_OVERFLOW.

• Frame Valid

Event generated when the start of a video frame is detected by the board acquisition hardware. Acquisition does not need to be active, therefore this event can verify a valid signal is connected. The Sapera event value is CORACQ\_VAL\_EVENT\_TYPE\_VERTICAL\_SYNC.

- Pixel Clock (Present/Absent) Event generated on the transition from detecting or not detecting a pixel clock signal. The Sapera event values are CORACQ\_VAL\_EVENT\_TYPE\_NO\_PIXEL\_CLK and CORACQ\_VAL\_EVENT\_TYPE\_PIXEL\_CLK.
- Frame Lost

The Frame Lost event indicates that an acquired image could not be transferred to on-board memory. An example of this case would be if there are no free on-board buffers available for the new image. This may be the case if the image transfer from onboard buffers to host PC memory cannot be sustained due to bus bandwidth issues.

The Sapera event value is CORACQ\_VAL\_EVENT\_TYPE\_FRAME\_LOST.

#### • Vertical Timeout

This event indicates a timeout situation where a camera fails to output a video frame after a trigger. The Sapera event value is CORACQ\_VAL\_EVENT\_VERTICAL\_TIMEOUT.

Link Error

This event indicates a transmission error has been detected. The Sapera event value is CORACQ\_VAL\_EVENT\_LINK\_ERROR.

#### External Line Trigger Too Slow

Event which indicates that the detected shaft encoder input tick rate is too slow for the device to take into account the specified shaft encoder multiplier value. The Sapera event value is CORACQ\_VAL\_EVENT\_TYPE\_EXT\_LINE\_TRIGGER\_TOO\_SLOW.

#### • Line Trigger Too Fast

Event which indicates a previous line-trigger did not generate a complete video line from the camera. Note that due to jitter associated with using shaft encoders, the acquisition device can delay a line trigger if a previous line has not yet completed. This event is generated if a second line trigger comes in while the previous one is still pending. This event is generated once per virtual frame. The Sapera event value is CORACQ\_VAL\_EVENT\_TYPE\_LINE\_TRIGGER\_TOO\_FAST.

• Shaft Encoder Reverse Count Overflow Event which indicates that the shaft encoder has travelled in the opposite direction expected and that the number of pulses encountered during that travel has exceeded the acquisition device counter. The acquisition device will thus not be able to skip the appropriate number of pulses when the expected direction is detected. The Sapera event value is CORACQ\_VAL\_EVENT\_TYPE\_SHAFT\_ENCODER\_REVERSE\_COUNT\_OVERFLOW

#### **Transfer Events**

Transfer events are the ones related to the transfer module. Transfer events provide feedback on image transfer from on-board FIFO memory to PC memory frame buffers.

• Start of Frame

The Start of Frame event is generated when the first image pixel is transferred from the onboard FIFO into PC memory.

The Sapera event value is CORXFER\_VAL\_EVENT\_TYPE\_START\_OF\_FRAME.

• End of Frame

The End of Frame event is generated when the last image pixel is transferred from the onboard FIFO into PC memory.

The Sapera event value is CORXFER\_VAL\_EVENT\_TYPE\_END\_OF\_FRAME.

End of Line

The End of Line event is generated after a video line is transferred to a PC buffer. The Sapera event value is CORXFER\_VAL\_EVENT\_TYPE\_END\_OF\_LINE.

• End of N Lines

The End of N Lines event is generated after a set number of video lines are transferred to a PC buffer. The Sapera event value is CORXFER\_VAL\_EVENT\_TYPE\_END\_OF\_NLINES.

• End of Transfer

The End of Transfer event is generated at the completion of the last image being transferred from the on-board FIFO into PC memory. To complete a transfer, a stop must be issued to the transfer module (if transfers are already in progress). If a transfer of a fixed number of frames was requested, the transfer module will stop transfers automatically. The Sapera event value is CORXFER\_VAL\_EVENT\_TYPE\_END\_OF\_TRANSFER.

#### **Trigger Signal Validity**

External trigger signal noise is easily ignored by the ACU with its programmable debounce control. A parameter is programmed for the minimum pulse duration considered as a valid external trigger pulse. Refer to Note 3: External Trigger Input Specifications for more information.

#### **Supported Transfer Cycling Methods**

The X64 Xcelera-HS PX8 supports the following transfer cycle modes which are either synchronous or asynchronous. These definitions are from the Sapera Basic Reference manual.

- CORXFER\_VAL\_CYCLE\_MODE\_SYNCHRONOUS\_WITH\_TRASH Before cycling to the next buffer in the list, the transfer device will check the next buffer's state. If its state is full, the transfer will be done in the trash buffer which is defined as the last buffer in the list; otherwise, it will occur in the next buffer. After a transfer to the trash buffer is done, the transfer device will check again the state of the next buffer. If it is empty, it will transfer to this buffer otherwise it will transfer again to the trash buffer.
- CORXFER\_VAL\_CYCLE\_MODE\_SYNCHRONOUS\_NEXT\_EMPTY\_WITH\_TRASH Before cycling to the next buffer in the list, the transfer device will check the next buffer's state. If its state is full, the next buffer will be skipped, and the transfer will be done in the trash buffer, which is defined as the last buffer in the list; otherwise it will occur in the next buffer. After a transfer to the trash is done, the transfer device will check the next buffer in the list, if its state is empty, it will transfer to this buffer otherwise it will skip it, and transfer again to the trash buffer.
- CORXFER\_VAL\_CYCLE\_MODE\_ASYNCHRONOUS The transfer device cycles through all buffers in the list without concern about the buffer state.

# **Output LUT Availability**

The following table defines the supported output LUT (look up tables) for the X64 Xcelera-HS PX8. Note that unsupported modes are not listed.

| Number of Bits | <b>Output Pixel Format</b> | LUT Format                 | Notes                      |
|----------------|----------------------------|----------------------------|----------------------------|
| 8<br>8         | MONO 8<br>MONO 16          | 8-in, 8-out<br>8-in, 8-out | 8 bits in 8 LSBs of 16-bit |
| 10             | MONO 8                     | 10-in, 8-out               |                            |
| 10             | MONO 16                    | 10-in, 16-out              |                            |
| 12             | MONO 8                     | 12-in, 8-out               | 8 MSB                      |
| 12             | MONO 16                    | 12-in, 16-out              |                            |

Table 9: Output LUT Availability

# X64 Xcelera-HS PX8 Supported Parameters

The tables below describe the Sapera capabilities supported by the X64 Xcelera-HS PX8 (i.e. default firmware is loaded). Unless specified, each capability applies to both boards or all mode configurations and all acquisition modes.



The information here is subject to change. Capabilities should be verified by the application because new board driver releases may change product specifications.

Specifically the X64 Xcelera-HS PX8 family is described in Sapera as:

- Board Server: Xcelera-HS\_PX8\_1
- Acquisition Module: dependent on firmware used

## **Camera Related Capabilities**

Table 10: Camera Related Capabilities

| Capability                   | Values                              |
|------------------------------|-------------------------------------|
| CORACQ_CAP_CONNECTOR_TYPE    | CORACQ_VAL_CONNECTOR_TYPE_CX4 (0x8) |
| CORACQ_CAP_CX4_CONFIGURATION | 0x6                                 |

### **Camera Related Parameters**

Table 11: Camera Related Parameters

| Parameter              | Values                                                                                                                                                                                                                                                                           |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CORACQ_PRM_CHANNEL     | max = 1 channel                                                                                                                                                                                                                                                                  |
| CORACQ_PRM_FRAME       | CORACQ_VAL_FRAME_PROGRESSIVE (0x2)                                                                                                                                                                                                                                               |
| CORACQ_PRM_INTERFACE   | CORACQ_VAL_INTERFACE_DIGITAL (0x2)                                                                                                                                                                                                                                               |
| CORACQ_PRM_SCAN        | CORACQ_VAL_SCAN_AREA (0x1)<br>CORACQ_VAL_SCAN_LINE (0x2)                                                                                                                                                                                                                         |
| CORACQ_PRM_SIGNAL      | CORACQ_VAL_SIGNAL_DIFFERENTIAL (0x2)                                                                                                                                                                                                                                             |
| CORACQ_PRM_VIDEO       | CORACQ_VAL_VIDEO_MONO (0x1)                                                                                                                                                                                                                                                      |
| CORACQ_PRM_PIXEL_DEPTH | 8 bits, # LUT = 1, LUT format=CORDATA_FORMAT_MONO8<br>10 bits, # LUT = 1, LUT format=CORDATA_FORMAT_MONO16<br>10 bits, # LUT = 1, LUT format=CORDATA_FORMAT_MONO8<br>12 bits, # LUT = 1, LUT format=CORDATA_FORMAT_MONO16<br>12 bits, # LUT = 1, LUT format=CORDATA_FORMAT_MONO8 |
| CORACQ_PRM_VIDEO_STD   | CORACQ_VAL_VIDEO_STD_NON_STD (0x1)                                                                                                                                                                                                                                               |
| CORACQ_PRM_FIELD_ORDER | CORACQ_VAL_FIELD_ORDER_NEXT_FIELD (0x4)                                                                                                                                                                                                                                          |
| CORACQ_PRM_HACTIVE     | min = 1 pixel<br>max = 16777215 pixel<br>step = 1 pixel                                                                                                                                                                                                                          |
| CORACQ_PRM_HSYNC       | min = 4 pixel<br>max = 4294967295 pixel<br>step = 1 pixel                                                                                                                                                                                                                        |
| CORACQ_PRM_VACTIVE     | min = 1 line<br>max = 16777215 line<br>step = 1 line                                                                                                                                                                                                                             |
| CORACQ_PRM_VSYNC       | min = 0 line<br>max = 4294967295 line<br>step = 1 line                                                                                                                                                                                                                           |

| CORACQ_PRM_TIME_INTEGRATE_METHOD             | CORACQ_VAL_TIME_INTEGRATE_METHOD_1 (0x1)<br>CORACQ_VAL_TIME_INTEGRATE_METHOD_2 (0x2)<br>CORACQ_VAL_TIME_INTEGRATE_METHOD_3 (0x4)<br>CORACQ_VAL_TIME_INTEGRATE_METHOD_4 (0x8)<br>CORACQ_VAL_TIME_INTEGRATE_METHOD_5 (0x10)<br>CORACQ_VAL_TIME_INTEGRATE_METHOD_6 (0x20)<br>CORACQ_VAL_TIME_INTEGRATE_METHOD_7 (0x40)<br>CORACQ_VAL_TIME_INTEGRATE_METHOD_8 (0x80)<br>CORACQ_VAL_TIME_INTEGRATE_METHOD_9 (0x100) |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CORACQ_PRM_CAM_TRIGGER_METHOD                | CORACQ_VAL_CAM_TRIGGER_METHOD_1 (0x1)<br>CORACQ_VAL_CAM_TRIGGER_METHOD_2 (0x2)                                                                                                                                                                                                                                                                                                                                 |
| CORACQ_PRM_CAM_TRIGGER_POLARITY              | CORACQ_VAL_ACTIVE_LOW (0x1)<br>CORACQ_VAL_ACTIVE_HIGH (0x2)                                                                                                                                                                                                                                                                                                                                                    |
| CORACQ_PRM_CAM_TRIGGER_DURATION              | min = 1 μs<br>max = 4294967294 μs<br>step = 1 μs                                                                                                                                                                                                                                                                                                                                                               |
| CORACQ_PRM_CAM_RESET_METHOD                  | CORACQ_VAL_CAM_RESET_METHOD_1 (0x1)                                                                                                                                                                                                                                                                                                                                                                            |
| CORACQ_PRM_CAM_RESET_POLARITY                | CORACQ_VAL_ACTIVE_LOW (0x1)<br>CORACQ_VAL_ACTIVE_HIGH (0x2)                                                                                                                                                                                                                                                                                                                                                    |
| CORACQ_PRM_CAM_RESET_DURATION                | min = 1 μs<br>max = 4294967294 μs<br>step = 1 μs                                                                                                                                                                                                                                                                                                                                                               |
| CORACQ_PRM_CAM_NAME                          | Default HS Link Line Scan 1 tap Mono                                                                                                                                                                                                                                                                                                                                                                           |
| CORACQ_PRM_LINE_INTEGRATE_METHOD             | CORACQ_VAL_LINE_INTEGRATE_METHOD_1 (0x1)<br>CORACQ_VAL_LINE_INTEGRATE_METHOD_2 (0x2)<br>CORACQ_VAL_LINE_INTEGRATE_METHOD_3 (0x4)<br>CORACQ_VAL_LINE_INTEGRATE_METHOD_4 (0x8)<br>CORACQ_VAL_LINE_INTEGRATE_METHOD_7 (0x40)                                                                                                                                                                                      |
| CORACQ_PRM_LINE_TRIGGER_METHOD               | CORACQ_VAL_LINE_TRIGGER_METHOD_1 (0x1)                                                                                                                                                                                                                                                                                                                                                                         |
| CORACQ_PRM_LINE_TRIGGER_POLARITY             | CORACQ_VAL_ACTIVE_LOW (0x1)<br>CORACQ_VAL_ACTIVE_HIGH (0x2)                                                                                                                                                                                                                                                                                                                                                    |
| CORACQ_PRM_LINE_TRIGGER_DELAY                | min = 0 μs<br>max = 65535 μs<br>step = 1 μs                                                                                                                                                                                                                                                                                                                                                                    |
| CORACQ_PRM_LINE_TRIGGER_DURATION             | min = 0 μs<br>max = 65535 μs<br>step = 1 μs                                                                                                                                                                                                                                                                                                                                                                    |
| CORACQ_PRM_TAPS                              | min = 1 tap, max = 6 tap, step = 1 tap (* only 5 and 6 taps supported)                                                                                                                                                                                                                                                                                                                                         |
| CORACQ_PRM_TAP_OUTPUT                        | CORACQ_VAL_TAP_OUTPUT_SEGMENTED (0x2)                                                                                                                                                                                                                                                                                                                                                                          |
| CORACQ_PRM_TAP_1_DIRECTION                   | CORACQ_VAL_TAP_DIRECTION_LR (0x1)<br>CORACQ_VAL_TAP_DIRECTION_UD (0x4)<br>CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x10)                                                                                                                                                                                                                                                                                             |
| CORACQ_PRM_TAP_2_DIRECTION                   | CORACQ_VAL_TAP_DIRECTION_LR (0x1)<br>CORACQ_VAL_TAP_DIRECTION_UD (0x4)<br>CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x10)                                                                                                                                                                                                                                                                                             |
| CORACQ_PRM_TAP_3_DIRECTION                   | CORACQ_VAL_TAP_DIRECTION_LR (0x1)<br>CORACQ_VAL_TAP_DIRECTION_UD (0x4)<br>CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x10)                                                                                                                                                                                                                                                                                             |
| CORACQ_PRM_TAP_4_DIRECTION                   | CORACQ_VAL_TAP_DIRECTION_LR (0x1)<br>CORACQ_VAL_TAP_DIRECTION_UD (0x4)<br>CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x10)                                                                                                                                                                                                                                                                                             |
| CORACQ_PRM_TAP_5_DIRECTION                   | CORACQ_VAL_TAP_DIRECTION_LR (0x1)<br>CORACQ_VAL_TAP_DIRECTION_UD (0x4)<br>CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x10)                                                                                                                                                                                                                                                                                             |
| CORACQ_PRM_TAP_6_DIRECTION                   | CORACQ_VAL_TAP_DIRECTION_LR (0x1)<br>CORACQ_VAL_TAP_DIRECTION_UD (0x4)<br>CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x10)                                                                                                                                                                                                                                                                                             |
| CORACQ_PRM_CHANNELS_ORDER                    | CORACQ_VAL_CHANNELS_ORDER_NORMAL (0x1)                                                                                                                                                                                                                                                                                                                                                                         |
| CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MIN         | 1 Hz                                                                                                                                                                                                                                                                                                                                                                                                           |
| CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MAX         | 16777215 Hz                                                                                                                                                                                                                                                                                                                                                                                                    |
| CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MIN   | 1 µs                                                                                                                                                                                                                                                                                                                                                                                                           |
| CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MAX   | 4294967294 μs                                                                                                                                                                                                                                                                                                                                                                                                  |
| CORACQ_PRM_CONNECTOR_HD_INPUT (*)            | Default = 0                                                                                                                                                                                                                                                                                                                                                                                                    |
| CORACQ_PRM_CONNECTOR_VD_INPUT (*)            | Default = 0                                                                                                                                                                                                                                                                                                                                                                                                    |
| CORACQ_PRM_CONNECTOR_RESET_TRIGGER_INPUT (*) | Default = 0                                                                                                                                                                                                                                                                                                                                                                                                    |
| CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY    | CORACQ_VAL_ACTIVE_LOW (0x1)<br>CORACQ_VAL_ACTIVE_HIGH (0x2)                                                                                                                                                                                                                                                                                                                                                    |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                |

| CORACQ_PRM_TIME_INTEGRATE_PULSE1_DELAY                | min = 0 μs<br>max = 4294967294 μs<br>step = 1 μs                |
|-------------------------------------------------------|-----------------------------------------------------------------|
| CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION             | min = 0 $\mu$ s<br>max = 4294967294 $\mu$ s<br>step = 1 $\mu$ s |
| CORACQ_PRM_CAM_IO_CONTROL (*)                         |                                                                 |
| CORACQ_PRM_CONNECTOR_EXPOSURE_INPUT (*)               | Default = 0                                                     |
| CORACQ_PRM_TIME_INTEGRATE_PULSE0_POLARITY             | CORACQ_VAL_ACTIVE_LOW (0x1)<br>CORACQ_VAL_ACTIVE_HIGH (0x2)     |
| CORACQ_PRM_TIME_INTEGRATE_PULSE0_DELAY                | min = 0 μs<br>max = 4294967294 μs<br>step = 1 μs                |
| CORACQ_PRM_TIME_INTEGRATE_PULSE0_DURATION             | min = 1 μs<br>max = 4294967294 μs<br>step = 1 μs                |
| CORACQ_PRM_LINE_INTEGRATE_PULSE1_POLARITY             | CORACQ_VAL_ACTIVE_LOW (0x1)<br>CORACQ_VAL_ACTIVE_HIGH (0x2)     |
| CORACQ_PRM_LINE_INTEGRATE_PULSE1_DELAY                | min = 0 μs<br>max = 4294967294 μs<br>step = 1 μs                |
| CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION             | min = 1 μs<br>max = 4294967294 μs<br>step = 1 μs                |
| CORACQ_PRM_LINE_INTEGRATE_PULSE0_POLARITY             | CORACQ_VAL_ACTIVE_LOW (0x1)<br>CORACQ_VAL_ACTIVE_HIGH (0x2)     |
| CORACQ_PRM_LINE_INTEGRATE_PULSE0_DELAY                | min = 0 μs<br>max = 65535 μs<br>step = 1 μs                     |
| CORACQ_PRM_LINE_INTEGRATE_PULSE0_DURATION             | min = 1 μs<br>max = 4294967294 μs<br>step = 1 μs                |
| CORACQ_PRM_CONNECTOR_LINE_TRIGGER_INPUT (*)           | Default = 0                                                     |
| CORACQ_PRM_CONNECTOR_LINE_INTEGRATE_INPUT (*)         | Connector #1, type 2, pin #1                                    |
| CORACQ_PRM_CONNECTOR_LINESCAN_DIRECTION_INPU<br>T (*) | Default = 0                                                     |
| CORACQ_PRM_BAYER_ALIGNMENT                            | Not available                                                   |
| CORACQ_PRM_CAM_CONTROL_DURING_READOUT                 | TRUE<br>FALSE                                                   |

# **VIC Related Parameters**

Table 12: VIC Related Parameters

| Parameter                          | Values                                                                                                                                       |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| CORACQ_PRM_CAMSEL                  | CAMSEL_MONO = from 0 to 0                                                                                                                    |  |
| CORACQ_PRM_PIXEL_MASK              | Not available                                                                                                                                |  |
| CORACQ_PRM_CROP_LEFT               | min = 0 pixel<br>max = 16777215 pixel<br>step = 16 pixel                                                                                     |  |
| CORACQ_PRM_CROP_TOP                | min = 0 line<br>max = 16777215 line<br>step = 1 line                                                                                         |  |
| CORACQ_PRM_CROP_WIDTH              | min = 16 pixel<br>max = 16777215 pixel<br>step = 16 pixel                                                                                    |  |
| CORACQ_PRM_CROP_HEIGHT             | min = 1 line<br>max = 16777215 line<br>step = 1 line                                                                                         |  |
| CORACQ_PRM_DECIMATE_METHOD         | CORACQ_VAL_DECIMATE_DISABLE (0x1)                                                                                                            |  |
| CORACQ_PRM_LUT_ENABLE              | TRUE<br>FALSE                                                                                                                                |  |
| CORACQ_PRM_LUT_NUMBER              | Default = 0                                                                                                                                  |  |
| CORACQ_PRM_STROBE_ENABLE           | TRUE<br>FALSE                                                                                                                                |  |
| CORACQ_PRM_STROBE_METHOD           | CORACQ_VAL_STROBE_METHOD_1 (0x1)<br>CORACQ_VAL_STROBE_METHOD_2 (0x2)<br>CORACQ_VAL_STROBE_METHOD_3 (0x4)<br>CORACQ_VAL_STROBE_METHOD_4 (0x8) |  |
| CORACQ_PRM_STROBE_POLARITY         | CORACQ_VAL_ACTIVE_LOW (0x1)<br>CORACQ_VAL_ACTIVE_HIGH (0x2)                                                                                  |  |
| CORACQ_PRM_STROBE_DURATION         | min = 0 μs<br>max = 4294967294 μs<br>step = 1 μs                                                                                             |  |
| CORACQ_PRM_STROBE_DELAY            | min = 0 μs<br>max = 4294967294 μs<br>step = 1 μs                                                                                             |  |
| CORACQ_PRM_TIME_INTEGRATE_ENABLE   | TRUE<br>FALSE                                                                                                                                |  |
| CORACQ_PRM_TIME_INTEGRATE_DURATION | min = 1 μs<br>max = 4294967294 μs<br>step = 1 μs                                                                                             |  |
| CORACQ_PRM_CAM_TRIGGER_ENABLE      | TRUE<br>FALSE                                                                                                                                |  |
| CORACQ_PRM_CAM_RESET_ENABLE        | TRUE<br>FALSE                                                                                                                                |  |
| CORACQ_PRM_OUTPUT_FORMAT           | CORACQ_VAL_OUTPUT_FORMAT_MONO8<br>CORACQ_VAL_OUTPUT_FORMAT_MONO16                                                                            |  |
| CORACQ_PRM_EXT_TRIGGER_ENABLE      | CORACQ_VAL_EXT_TRIGGER_OFF (0x1)<br>CORACQ_VAL_EXT_TRIGGER_ON (0x8)                                                                          |  |
| CORACQ_PRM_VIC_NAME                | Default HS Link Line Scan 1 tap Mono                                                                                                         |  |
| CORACQ_PRM_LUT_MAX                 | 1                                                                                                                                            |  |
| CORACQ_PRM_EXT_TRIGGER_DETECTION   | CORACQ_VAL_ACTIVE_LOW (0x1)<br>CORACQ_VAL_ACTIVE_HIGH (0x2)<br>CORACQ_VAL_RISING_EDGE (0x4)<br>CORACQ_VAL_FALLING_EDGE (0x8)                 |  |
| CORACQ_PRM_LUT_FORMAT              | Default = CORACQ_VAL_OUTPUT_FORMAT_MONO8                                                                                                     |  |
| CORACQ_PRM_LINE_INTEGRATE_ENABLE   | TRUE<br>FALSE                                                                                                                                |  |
| CORACQ_PRM_LINE_INTEGRATE_DURATION | min = 1 pixel<br>max = 16777215 pixel<br>step = 1 pixel                                                                                      |  |
| CORACQ_PRM_LINE_TRIGGER_ENABLE     | TRUE<br>FALSE                                                                                                                                |  |

| CORACQ_PRM_EXT_FRAME_TRIGGER_ENABLE      | TRUE<br>FALSE                                                                                                                                                                                                             |  |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| CORACQ_PRM_EXT_FRAME_TRIGGER_DETECTION   | CORACQ_VAL_ACTIVE_LOW (0x1)<br>CORACQ_VAL_ACTIVE_HIGH (0x2)<br>CORACQ_VAL_RISING_EDGE (0x4)<br>CORACQ_VAL_FALLING_EDGE (0x8)<br>CORACQ_VAL_DOUBLE_PULSE_RISING_EDGE (0x20)<br>CORACQ_VAL_DOUBLE_PULSE_FALLING_EDGE (0x40) |  |
| CORACQ_PRM_EXT_LINE_TRIGGER_ENABLE       | TRUE<br>FALSE                                                                                                                                                                                                             |  |
| CORACQ_PRM_EXT_LINE_TRIGGER_DETECTION    | CORACQ_VAL_RISING_EDGE (0x4)                                                                                                                                                                                              |  |
| CORACQ_PRM_SNAP_COUNT                    | min = 1<br>max = 65535<br>step = 1                                                                                                                                                                                        |  |
| CORACQ_PRM_INT_LINE_TRIGGER_ENABLE       | TRUE<br>FALSE                                                                                                                                                                                                             |  |
| CORACQ_PRM_INT_LINE_TRIGGER_FREQ         | Default = 5000 Hz                                                                                                                                                                                                         |  |
| CORACQ_PRM_LINESCAN_DIRECTION_OUTPUT (*) | Not available                                                                                                                                                                                                             |  |
| CORACQ_PRM_BIT_ORDERING                  | CORACQ_VAL_BIT_ORDERING_STD (0x1)                                                                                                                                                                                         |  |
| CORACQ_PRM_EXT_TRIGGER_LEVEL             | CORACQ_VAL_LEVEL_TTL (0x1)<br>CORACQ_VAL_LEVEL_422 (0x2)                                                                                                                                                                  |  |
| CORACQ_PRM_STROBE_LEVEL                  | CORACQ_VAL_LEVEL_TTL (0x1)                                                                                                                                                                                                |  |
| CORACQ_PRM_EXT_FRAME_TRIGGER_LEVEL       | CORACQ_VAL_LEVEL_TTL (0x1)<br>CORACQ_VAL_LEVEL_422 (0x2)                                                                                                                                                                  |  |
| CORACQ_PRM_EXT_LINE_TRIGGER_LEVEL        | CORACQ_VAL_LEVEL_422 (0x2)                                                                                                                                                                                                |  |
| CORACQ_PRM_INT_LINE_TRIGGER_FREQ_MIN     | 245 Hz                                                                                                                                                                                                                    |  |
| CORACQ_PRM_INT_LINE_TRIGGER_FREQ_MAX     | 500000 Hz                                                                                                                                                                                                                 |  |
| CORACQ_PRM_SHAFT_ENCODER_DROP            | min = 0 tick<br>max = 255 tick<br>step = 1 tick                                                                                                                                                                           |  |
| CORACQ_PRM_SHAFT_ENCODER_ENABLE          | TRUE<br>FALSE                                                                                                                                                                                                             |  |
| CORACQ_PRM_EXT_TRIGGER_FRAME_COUNT       | min = 1<br>max = 65534<br>step = 1                                                                                                                                                                                        |  |
| CORACQ_PRM_INT_FRAME_TRIGGER_ENABLE      | TRUE<br>FALSE                                                                                                                                                                                                             |  |
| CORACQ_PRM_INT_FRAME_TRIGGER_FREQ        | min = 1 milli-Hz<br>max = 1073741823 milli-Hz<br>step = 1 milli-Hz                                                                                                                                                        |  |
| CORACQ_PRM_STROBE_DELAY_2                | min = 0 μs<br>max = 4294967294 μs<br>step = 1 μs                                                                                                                                                                          |  |
| CORACQ_PRM_FRAME_LENGTH                  | CORACQ_VAL_FRAME_LENGTH_FIX (0x1)<br>CORACQ_VAL_FRAME_LENGTH_VARIABLE (0x2)                                                                                                                                               |  |
| CORACQ_PRM_FLIP                          | CORACQ_VAL_FLIP_OFF (0x00)<br>CORACQ_VAL_FLIP_HORZ (0x01)                                                                                                                                                                 |  |
| CORACQ_PRM_EXT_TRIGGER_DURATION          | min = 0 μs<br>max = 255 μs<br>step = 1 μs                                                                                                                                                                                 |  |
| CORACQ_PRM_TIME_INTEGRATE_DELAY          | min = 0 μs<br>max = 4294967294 μs<br>step = 1 μs                                                                                                                                                                          |  |
| CORACQ_PRM_CAM_RESET_DELAY               | $min = 0 \ \mu s$ $max = 0 \ \mu s$ $step = 1 \ \mu s$                                                                                                                                                                    |  |
| CORACQ_PRM_CAM_TRIGGER_DELAY             | min = 0 μs<br>max = 4294967294 μs<br>step = 1 μs                                                                                                                                                                          |  |
| CORACQ_PRM_SHAFT_ENCODER_LEVEL           | CORACQ_VAL_LEVEL_422 (0x2)                                                                                                                                                                                                |  |
| CORACQ_PRM_EXT_FRAME_TRIGGER_SOURCE (*)  | min = 0<br>max = 5<br>step = 1                                                                                                                                                                                            |  |
| CORACQ_PRM_EXT_LINE_TRIGGER_SOURCE (*)   | min = 0<br>max = 7<br>step = 1                                                                                                                                                                                            |  |

| CORACQ_PRM_EXT_TRIGGER_SOURCE (*)      | min = 0<br>max = 5<br>step = 1                                                                                                                                                                                                                                                                                      |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CORACQ_PRM_SHAFT_ENCODER_MULTIPLY      | min = 1<br>max = 32<br>step = (2**N)                                                                                                                                                                                                                                                                                |
| CORACQ_PRM_EXT_TRIGGER_DELAY           | min = 0<br>max = 4294967294<br>step = 1                                                                                                                                                                                                                                                                             |
| CORACQ_PRM_EXT_TRIGGER_DELAY_TIME_BASE | CORACQ_VAL_TIME_BASE_US (0x1)<br>CORACQ_VAL_TIME_BASE_LINE (0x4)<br>CORACQ_VAL_TIME_BASE_LINE_TRIGGER (0x8)<br>CORACQ_VAL_TIME_BASE_SHAFT_ENCODER (0x40)                                                                                                                                                            |
| CORACQ_PRM_EXT_TRIGGER_IGNORE_DELAY    | min = 0<br>max = 65535000<br>step = 1                                                                                                                                                                                                                                                                               |
| CORACQ_PRM_EXT_TRIGGER_SOURCE_STR      | <ul> <li>[0] = Automatic</li> <li>[1] = From External Trigger #1</li> <li>[2] = From External Trigger #2</li> <li>[3] = From Board Sync</li> <li>[4] = To Board Sync</li> <li>[5] = Pulse to Board Sync</li> </ul>                                                                                                  |
| CORACQ_PRM_EXT_LINE_TRIGGER_SOURCE_STR | <ul> <li>[0] = Automatic</li> <li>[1] = From Shaft Encoder Phase A</li> <li>[2] = From Shaft Encoder Phase B</li> <li>[3] = From Shaft Encoder Phase A &amp; B</li> <li>[4] = From Board Sync</li> <li>[5] = To Board Sync</li> <li>[6] = Pulse to Board Sync</li> <li>[7] = To Board Sync When Grabbing</li> </ul> |
| CORACQ_PRM_VERTICAL_TIMEOUT_DELAY      | min = 0<br>max = 16383000<br>step = 1                                                                                                                                                                                                                                                                               |
| CORACQ_PRM_SHAFT_ENCODER_SOURCE (*)    | min = 0<br>max = 2<br>step = 1                                                                                                                                                                                                                                                                                      |
| CORACQ_PRM_SHAFT_ENCODER_SOURCE_STR    | [0] = Automatic<br>[1] = From Shaft Encoder Optocoupled<br>[2] = From Shaft Encoder RS422                                                                                                                                                                                                                           |
| CORACQ_PRM_SHAFT_ENCODER_DIRECTION     | CORACQ_VAL_SHAFT_ENCODER_DIRECTION_IGNORE (0x0)<br>CORACQ_VAL_SHAFT_ENCODER_DIRECTION_FORWARD (0x1)<br>CORACQ_VAL_SHAFT_ENCODER_DIRECTION_REVERSE (0x2)                                                                                                                                                             |
| CORACQ_PRM_LINE_TRIGGER_AUTO_DELAY     | CORACQ_VAL_LINE_TRIGGER_AUTO_DELAY_DISABLE (0x0)<br>CORACQ_VAL_LINE_TRIGGER_AUTO_DELAY_FREQ_MAX (0x2)                                                                                                                                                                                                               |

# **ACQ Related Parameters**

Table 13: Acquisition Related Parameters

| Parameter                             |                         | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CORACQ_PRM_LABEL                      |                         | HS Link Mono #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CORACQ_PRM_EVENT_TYPE                 |                         | CORACQ_VAL_EVENT_TYPE_START_OF_FRAME (0x80000)<br>CORACQ_VAL_EVENT_TYPE_END_OF_FRAME (0x80000)<br>CORACQ_VAL_EVENT_TYPE_END_OF_FRAME (0x800000)<br>CORACQ_VAL_EVENT_TYPE_EXTERNAL_TRIGGER (0x1000000)<br>CORACQ_VAL_EVENT_TYPE_VERTICAL_SYNC (0x2000000)<br>CORACQ_VAL_EVENT_TYPE_NO_PIXEL_CLK (0x40000000)<br>CORACQ_VAL_EVENT_TYPE_FRAME_LOST (0x80000)<br>CORACQ_VAL_EVENT_TYPE_DATA_OVERFLOW (0x4000)<br>CORACQ_VAL_EVENT_TYPE_EXTERNAL_TRIGGER_IGNORED (0x2000)<br>CORACQ_VAL_EVENT_TYPE_VERTICAL_TIMEOUT (0x40)<br>CORACQ_VAL_EVENT_TYPE_EXTERNAL_TRIGGER_TOO_SLOW (0x400)<br>CORACQ_VAL_EVENT_TYPE_SHAFT_ENCODER_REVERSE_COUNT_OVERFLOW<br>(0x4)<br>CORACQ_VAL_EVENT_TYPE_LINE_TRIGGER_TOO_FAST (0x8) |
| CORACQ_PRM_SIGNAL_STATUS              |                         | CORACQ_VAL_SIGNAL_HSYNC_PRESENT<br>CORACQ_VAL_SIGNAL_VSYNC_PRESENT<br>CORACQ_VAL_SIGNAL_PIXEL_CLK_PRESENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CORACQ_PRM_DETECT_HACTIVE             |                         | Available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CORACQ_PRM_DETECT_VACTIVE             |                         | Available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CORACQ_PRM_FLAT_FIELD_ENABLE          |                         | TRUE<br>FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CORACQ_PRM_FLAT_FIELD_OFFSET          | 8 bit FFC<br>12 bit FFC | min = 0, max = 255, step = 1<br>min = 0, max = 4095, step = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CORACQ_PRM_FLAT_FIELD_SELECT          |                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CORACQ_PRM_FLAT_FIELD_GAIN            | 8 bit FFC<br>12 bit FFC | min = 1, max = 255, step = 1<br>min = 1, max = 4095, step = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CORACQ_PRM_FLAT_FIELD_GAIN_DIVISOR    | 8 bit FFC<br>12 bit FFC | 128<br>2048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CORACQ_PRM_FLAT_FIELD_PIXEL_REPLACEME | NT                      | TRUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CORACQ_CAP_SERIAL_PORT_INDEX          |                         | Supported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

# **Transfer Related Capabilities**

Table 14: Transfer Related Capabilities

| Capability                          | Values                                |
|-------------------------------------|---------------------------------------|
| CORXFER_CAP_NB_INT_BUFFERS          | CORXFER_VAL_NB_INT_BUFFERS_AUTO (0x2) |
| CORXFER_CAP_MAX_XFER_SIZE           | 4294967040 Bytes                      |
| CORXFER_CAP_MAX_FRAME_COUNT         | 65535 Frames                          |
| CORXFER_CAP_COUNTER_STAMP_AVAILABLE | Supported                             |
| CORXFER_CAP_COUNTER_STAMP_MAX       | 214783647                             |

## **Transfer Related Parameters**

Table 15: Transfer Related Parameters

| Parameter                                            | Values                                                                                                                                                                                                       |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CORXFER_PRM_EVENT_TYPE<br>CORXFER_PRM_EVENT_TYPE_EX  | CORXFER_VAL_EVENT_TYPE_START_OF_FRAME<br>CORXFER_VAL_EVENT_TYPE_END_OF_FRAME<br>CORXFER_VAL_EVENT_TYPE_END_OF_TRANSFER<br>CORXFER_VAL_EVENT_TYPE_END_OF_LINE<br>CORXFER_VAL_EVENT_TYPE_END_OF_NLINES         |
| CORXFER_PRM_START_MODE                               | CORXFER_VAL_START_MODE_ASYNCHRONOUS (0x0)<br>CORXFER_VAL_START_MODE_SYNCHRONOUS (0x1)<br>CORXFER_VAL_START_MODE_HALF_ASYNCHRONOUS (0x2)<br>CORXFER_VAL_START_MODE_SEQUENTIAL (0x3)                           |
| CORXFER_PRM_CYCLE_MODE                               | CORXFER_VAL_CYCLE_MODE_ASYNCHRONOUS (0x0)<br>CORXFER_VAL_CYCLE_MODE_SYNCHRONOUS_WITH_TRASH (0x2)<br>CORXFER_VAL_CYCLE_MODE_OFF (0x3)<br>CORXFER_VAL_CYCLE_MODE_SYNCHRONOUS_NEXT_EMPTY_WITH_TRASH (0x5)       |
| CORXFER_PRM_FLIP                                     | CORXFER_VAL_FLIP_OFF (0x0)<br>CORXFER_VAL_FLIP_VERT (0x2)                                                                                                                                                    |
| CORXFER_PRM_INT_BUFFERS                              | 2                                                                                                                                                                                                            |
| CORXFER_COUNTER_STAMP_TIME_BASE                      | CORXFER_VAL_TIME_BASE_US (0x1)<br>CORXFER_VAL_TIME_BASE_MS (0x2)<br>CORXFER_VAL_TIME_BASE_LINE_TRIGGER (0x8)<br>CORXFER_VAL_TIME_BASE_EXT_FRAME_TRIGGER (0x20)<br>CORXFER_VAL_TIME_BASE_SHAFT_ENCODER (0x40) |
| CORXFER_PRM_EVENT_COUNT_SOURCE                       | CORXFER_VAL_EVENT_COUNT_SOURCE_DST (0x1)<br>CORXFER_VAL_EVENT_COUNT_SOURCE_SRC (0x2)                                                                                                                         |
| CORXFER_PRM_BUFFER_TIMESTAMP_MODULE                  | CORXFER_VAL_BUFFER_TIMESTAMP_MODULE_ACQ (0x1)<br>CORXFER_VAL_BUFFER_TIMESTAMP_MODULE_XFER (0x13)                                                                                                             |
| CORXFER_PRM_BUFFER_TIMESTAMP_EVENT (ACQ<br>Related)  | CORACQ_VAL_EVENT_TYPE_START_OF_FRAME (0x80000)<br>CORACQ_VAL_EVENT_TYPE_END_OF_FRAME (0x800000)<br>CORACQ_VAL_EVENT_TYPE_EXTERNAL_TRIGGER (0x1000000)                                                        |
| CORXFER_PRM_BUFFER_TIMESTAMP_EVENT (XFER<br>Related) | CORXFER_VAL_EVENT_TYPE_START_OF_FRAME (0x80000)<br>CORXFER_VAL_EVENT_TYPE_END_OF_FRAME (0x800000)                                                                                                            |
| CORXFER_PRM_LINE_MERGING                             | CORXFER_VAL_LINE_MERGING_AUTO (0x0)<br>CORXFER_VAL_LINE_MERGING_OFF (0x2)                                                                                                                                    |

# **General Outputs: Related Capabilities (for GIO Module #0)**

These are the User Outputs available on connector J4.

Table 16: GIO-0 Related Capabilities

| Capability              | Values        |
|-------------------------|---------------|
| CORGIO_CAP_IO_COUNT     | 4 I/Os        |
| CORGIO_CAP_DIR_OUTPUT   | 0xf           |
| CORGIO_CAP_DIR_TRISTATE | 0x0           |
| CORGIO_CAP_EVENT_TYPE   | Not Available |
| CORGIO_CAP_READ_ONLY    | Not Available |

### **General Outputs: Related Parameters (for GIO Module #0)**

Table 17: GIO-0 Related Parameters

| Parameter              | Values                                  |
|------------------------|-----------------------------------------|
| CORGIO_PRM_LABEL       | General I/O #0                          |
| CORGIO_PRM_DEVICE_ID   | 0                                       |
| CORGIO_PRM_OUTPUT_TYPE | CORGIO_VAL_OUTPUT_TYPE_OPTOCOUPLE (0x8) |
| CORGIO_PRM_CONNECTOR   | Not Available                           |

### **General Inputs: Related Capabilities (for GIO Module #1)**

These are the User Inputs available on connector J4.

Table 18: GIO-1 Related Capabilities

| Capability              | Values                                                                              |
|-------------------------|-------------------------------------------------------------------------------------|
| CORGIO_CAP_IO_COUNT     | 4 I/Os                                                                              |
| CORGIO_CAP_DIR_OUTPUT   | 0x0                                                                                 |
| CORGIO_CAP_DIR_TRISTATE | 0x0                                                                                 |
| CORGIO_CAP_EVENT_TYPE   | CORGIO_VAL_EVENT_TYPE_RISING_EDGE (0x1)<br>CORGIO_VAL_EVENT_TYPE_FALLING_EDGE (0x2) |
| CORGIO_CAP_READ_ONLY    | Not Available                                                                       |

### **General Inputs: Related Parameters (for GIO Module #1)**

Table 19: GIO-1 Related Parameters

| Parameter              | Values                                                                                                       |
|------------------------|--------------------------------------------------------------------------------------------------------------|
| CORGIO_PRM_LABEL       | General I/O #1                                                                                               |
| CORGIO_PRM_DEVICE_ID   | 1                                                                                                            |
| CORGIO_PRM_INPUT_LEVEL | CORGIO_VAL_INPUT_LEVEL_TTL (0x1)<br>CORGIO_VAL_INPUT_LEVEL_422 (0x2)<br>CORGIO_VAL_INPUT_LEVEL_24VOLTS (0x8) |
| CORGIO_PRM_CONNECTOR   | Not Available                                                                                                |

# **Windows Embedded 7 Installation**

Windows Embedded 7 is not officially supported by Teledyne DALSA due to the number of possible configurations. However, Sapera LT and other Teledyne DALSA products should function properly on the Windows Embedded 7 platform provided that the required components are installed.

Teledyne DALSA provides answer files (.xml) for use during Windows Embedded 7 installation that install all necessary components for running Sapera LT 32-bit or 64-bit versions (SDK or Runtime), Sapera Processing 32-bit or 64-bit versions (SDK or Runtime), and Teledyne DALSA frame grabbers.

For each platform (32 or 64-bit), the answer file provided is:

 SaperaFrameGrabbers.xml: Configuration for Sapera LT, Sapera Processing and a Teledyne DALSA frame grabber

The file is located in the following directory dependent on the platform used:

```
<Install Directory>\Sapera\Install\Win7_Embedded\Win32
<Install Directory>\Sapera\Install\Win7_Embedded\Win64
```

The OS footprint for these configurations is less than 1 GB. Alternatively, the Windows Thin Client configuration template provided by Microsoft in the Windows Embedded 7 installation also provides the necessary dependencies for Sapera LT, and Teledyne DALSA frame grabbers (with an OS footprint of approximately 1.5 GB).

If you are installing other applications on the Windows Embedded 7 platform, it is recommended that you verify which components are required, and if necessary, create a corresponding "Answer File".

For more information on performing dependency analysis to enable your application on Windows Embedded 7, refer to the Microsoft Windows Embedded 7 documentation.

# **Servers and Resources**

#### The following table describes the X64 Xcelera-HS PX8 board

Table 20: X64 Xcelera-HS PX8 Full Board - Servers and Resources

| Servers                                | Resources   |                 |       |                                 |
|----------------------------------------|-------------|-----------------|-------|---------------------------------|
| Name                                   | Туре        | Name            | Index | Description                     |
| Xcelera-HS_PX8_1<br>(default firmware) | Acquisition | HS Link Mono #1 | 0     | Monochrome<br>output, Camera #1 |

# **Technical Specifications**

# X64 Xcelera-HS PX8 Board Specifications

#### **Digital Video Input & Controls**

Table 21: Board Specifications

| Input Type                              | Camera HS-Link Specifications Rev 0.1 compliant                                                                                                                                                              |  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Common Pixel Formats                    | HS-Link tap configuration for 8-bit mono                                                                                                                                                                     |  |
| Tap Format Details                      | 5- 6 Tap(s) – 8-bit mono                                                                                                                                                                                     |  |
| Scanning                                | Area scan and Line scan: Progressive, Multi-Tap                                                                                                                                                              |  |
| Scanning Directions                     | Left to Right, Up-Down, From Top                                                                                                                                                                             |  |
| Resolution note: these are X64          | Horizontal Minimum:<br>8 Pixels per tap (8-bits/pixel)                                                                                                                                                       |  |
| Xcelera-HS PX8<br>maximums, not HS-Link | Horizontal Maximum:<br>8-bits/pixel x 256K Pixels/line<br>16-bits/pixel x 8 Million Pixels/line                                                                                                              |  |
| specifications                          | Vertical Minimum:<br>1 line                                                                                                                                                                                  |  |
|                                         | Vertical Maximum:<br>up to 16,000,000 lines—for area scan sensors<br>infinite line count—for linescan sensors                                                                                                |  |
| Data Clock                              | 3.125 GHz                                                                                                                                                                                                    |  |
| Image Buffer                            | Available with 256 MB                                                                                                                                                                                        |  |
| Bandwidth to Host<br>System             | Approximately 1.5 GB/s.                                                                                                                                                                                      |  |
| Serial Port                             | Supports communication speeds from 9600 to 115 kbps                                                                                                                                                          |  |
| Camera Controls                         | Compliant with Teledyne DALSA Trigger-to-Image Reliability framework                                                                                                                                         |  |
|                                         | Comprehensive event notifications,<br>(see "Trigger To Image Reliability" on page 54)                                                                                                                        |  |
|                                         | Timing control logic for EXSYNC, PRIN and strobe signals                                                                                                                                                     |  |
|                                         | Dual independent opto-coupled external trigger inputs programmable as active high or low (edge or level trigger, where pulse width minimum is 100ns)                                                         |  |
|                                         | External trigger latency less than 1 µsec.                                                                                                                                                                   |  |
|                                         | One TTL Strobe output                                                                                                                                                                                        |  |
|                                         | Quadrature (phase A & B) shaft-encoder inputs for external web<br>synchronization. Use opto-coupled or RS-422.<br>Opto-coupler input maximum frequency is 200 KHz<br>RS-422 input maximum frequency is 5 MHz |  |
|                                         | 4 opto-coupled general inputs (5V/24V)                                                                                                                                                                       |  |
|                                         | 4 opto-coupled general outputs                                                                                                                                                                               |  |

| Processing | Output Lookup Table<br>one 8-bit in – 8-bit out<br>one 10-bit in – 16-bit out<br>one 12-bit in – 16-bit out<br>See the Output LUT Availability section for details.<br>Flat Field Correction (Shading Correction):                                                                                              |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Uses dedicated 256 MB memory bank.<br>Real-time Flat-line and Flat-field correction.<br>8 bit or 12 bit correction (firmware selectable)<br>Compensates for sensor defects such as FPN, PRNU, defective pixels and<br>variations between pixels due to the light refraction through a lens<br>(Shading effect). |
|            | PRNU ( <i>Photo Response Non Uniformity</i> ): PRNU is the variation in response between sensor pixels.                                                                                                                                                                                                         |
|            | FPN ( <i>Fixed Pattern Noise</i> ): FPN is the unwanted static variations in response for all pixels in the image.                                                                                                                                                                                              |

# **Host System Requirements**

#### **General System Requirements for the X64 Xcelera-HS PX8**

- PCI Express x8 slot compatible
- On some computers the X64 Xcelera-HS PX8 may function installed in a x16 slot. The computer documentation or direct testing is required.

#### X64 Xcelera-HS PX8 Dimensions

Approximately 6.5 in. (16.6 cm) wide by 4 in. (10 cm) high.

#### **Operating System Support**

Windows 7, Windows 8 and Windows 10, 32-bit or 64-bit

#### Environment

Table 22: Environment Specifications

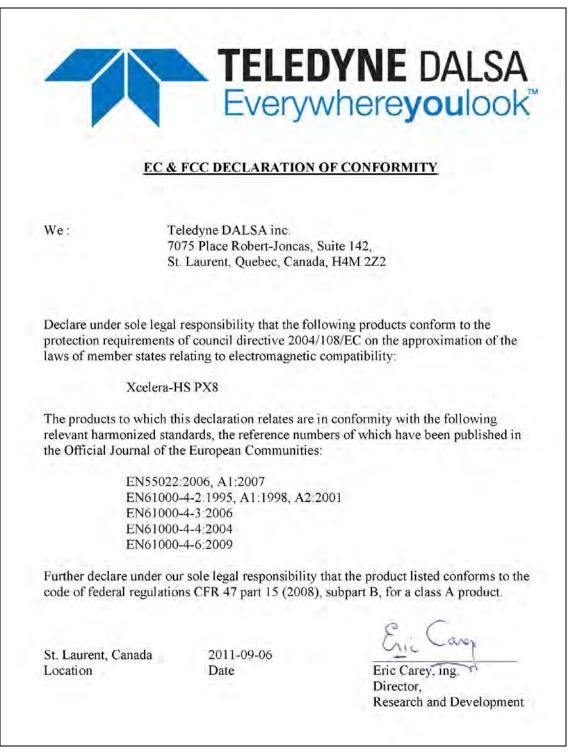
| Ambient            | 10° to 50° C (operation)                                    |
|--------------------|-------------------------------------------------------------|
| Temperature:       | -40° to 75° C (storage)                                     |
| Relative Humidity: | 5% to 90% non-condensing (operating)<br>0% to 95% (storage) |

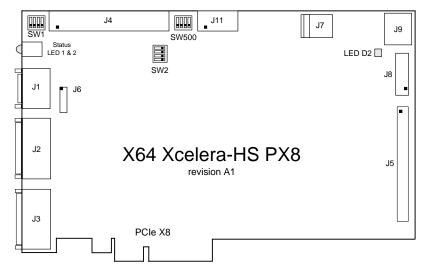
#### **Power Requirements**

Table 23: Power Specifications

| +3.3V: | 1.5A (standby)<br>1.5A (during acquisition) |
|--------|---------------------------------------------|
| +12V:  | 1.2A (standy)<br>1.5A (during acquisition)  |

# **EMI Certifications**





Figure 20: EC & FCC Declaration of Conformity

| 방송구                                            | 통신기자재등의 적합등록 필증                                                                                        |  |  |  |  |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|
| Registration                                   | n of Broadcasting and Communication Equipments                                                         |  |  |  |  |
| 상호 또는 성명 (주)앤비젼<br>Trade Name or Registrant    |                                                                                                        |  |  |  |  |
| 기자재 명칭<br>Equipment Name                       | BOARD (FRAME GRABBER)                                                                                  |  |  |  |  |
| 기본모델명<br>Basic Model Number                    | OR-X8H0-RP400 (Xcelera-HS PX8)                                                                         |  |  |  |  |
| 파생모델명<br>Series Model Number                   |                                                                                                        |  |  |  |  |
| 등록번호<br>Registration No.                       | MSIP-REI-KEG-OR-X8H0-RP400                                                                             |  |  |  |  |
| 제조자/제조(조립)국가<br>Manufacturer/Country of Origin | Teledyne Dalsa.Inc / 캐나다                                                                               |  |  |  |  |
| 등록연월일<br>Date of Registration                  | 2016-12-05                                                                                             |  |  |  |  |
| 기타<br>Others                                   |                                                                                                        |  |  |  |  |
|                                                | 제58조의2 제3항에 따라 등록되었음을 증명합니다.<br>quipment has been registered under the Clause 3, Article 58-2 of Radio |  |  |  |  |
|                                                | 2016년(Year) 12월(Month) 05일(Date)<br>국립전파연구원장 <mark>단영구</mark>                                          |  |  |  |  |
| Director                                       | General of National Radio Research Agency                                                              |  |  |  |  |
|                                                | 동신이지께는 빈드시 <b>"적 합성 평가표시"</b> 볼 부사하여 유통하여야 합니다.<br>위법시 과테료 최분 및 등록이 취소될 수 있습니다.                        |  |  |  |  |

Figure 21: Korean Certification

# **Connector and Switch Locations**

Below are drawings for the various board revisions released by Teledyne DALSA, where the most current is shown first. A table following each drawing provides a short description of each connector and switch. Details are provided in this section.



## X64 Xcelera-HS PX8 revision A1 Layout Drawing

Figure 22: Board A1 Layout

## **Connector, Switch Description List (revision A1)**

The following table lists components on the X64 Xcelera-HS PX8 board. Detailed information follows for connectors or switches the end user may have need of.

| Location | Description                                         | Location           | Description                       |  |
|----------|-----------------------------------------------------|--------------------|-----------------------------------|--|
| J1       | External Signals connector CMD15                    | J7                 | PC power to IO interface (note 6) |  |
| J2       | HS-Link INPUT connector                             | 39                 | Multi Board Sync                  |  |
| ]3       | HS-Link OUTPUT connector                            | J5, J6, J8         | Reserved                          |  |
| ]4       | External signals connector                          | SW1, SW2,<br>SW500 | Configuration micro-switches      |  |
| J11      | Alternative RS-422 Shaft Encoder<br>Input Connector | Status LEDs        | refer to text                     |  |
|          |                                                     | LED D2             | refer to text                     |  |

Table 24: Board A1 Connector List

## X64 Xcelera-HS PX8 revision A0 Layout Drawing

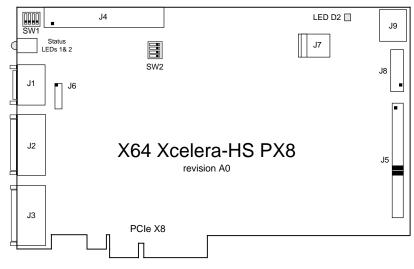



Figure 23: Board A0 Layout

#### **Connector, Switch Description List (revision A0)**

The following table lists components on the X64 Xcelera-HS PX8 board. Detailed information follows for connectors or switches the end user may have need of.

Table 25: Board A0 Connector List

| Location    | Description                      | Location   | Description                             |
|-------------|----------------------------------|------------|-----------------------------------------|
| J1          | External Signals connector CMD15 | ]7         | PC power to IO interface (note 6)       |
| J2          | HS-Link INPUT connector          | ]9         | Multi Board Sync                        |
| J3          | HS-Link OUTPUT connector         | J5, J6, J8 | Reserved (refer to text for J5 jumpers) |
| ]4          | External signals connector       | SW1, SW2,  | Configuration micro-switches            |
| Status LEDs | refer to text                    | LED D2     | refer to text                           |

## X64 Xcelera-HS PX8 End Bracket Detail

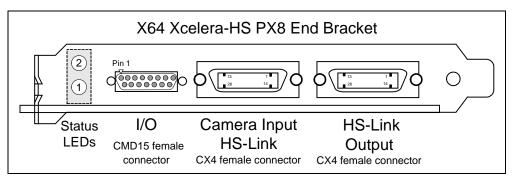



Figure 24: End Bracket Details

The hardware installation process is completed with the connection of a supported camera to the X64 Xcelera-HS PX8 board using a CX4 cable cables (see the "Product Part Numbers section).

- The X64 Xcelera-HS PX8 board supports one camera with a CX4 connector.
- Connect the camera to the HS-Link Input with a CX4 cable (Thumbscrew style).
- When forwarding the camera data to a 2<sup>nd</sup> frame grabber, connect a short CX4 cable between the HS-Link Output of the 1<sup>st</sup> frame grabber to the HS-Link input of the 2<sup>nd</sup> frame grabber. For data forwarding, cable length should not exceed 10 meters.

Contact Teledyne DALSA or browse our web site <u>http://www.teledynedalsa.com/imaging/products</u> for the latest information on X64 Xcelera-HS PX8 supported cameras.

# **Configuration Micro-switches**

Three sets of 4 switches are used for user configurations not controlled by software. The following figure is a typical view of each switch set, shown with the individual switch set in the OFF position. Following the figure, each of the three switch sets is described. Refer to the board component layout for their positions (see the Connector and Switch Locations section).

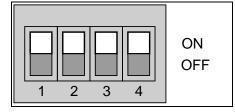



Figure 25: SW1, SW2, SW500 Component View

## SW1: General Inputs Signal Switch Point

For each general input, select the threshold voltage detected as a logic high signal. See the J1: CMD15 Male External Signals Connector section.

Table 26: SW1 Switches

| SW1<br>Switch Number | Assigned to     | OFF Position            | ON Position<br>(default) |
|----------------------|-----------------|-------------------------|--------------------------|
| 1                    | general input 1 | Logic Transition at     |                          |
| 2                    | general input 2 | ~2 volts (preferred for | Logic Transition at      |
| 3                    | general input 3 | differential            | ~10 volts                |
| 4                    | general input 4 | signals)                |                          |

### SW2: Trigger Inputs Signal Switch Point

For each trigger input, select the threshold voltage detected as a logic high signal. See the J1: CMD15 Male External Signals Connector section.

| Table 27 | : SW2 | Switches |
|----------|-------|----------|
|----------|-------|----------|

| SW2<br>Switch Number | Assigned to     | OFF Position<br>(default) | ON Position         |
|----------------------|-----------------|---------------------------|---------------------|
| 1                    | trigger input 1 | Logic Transition at       |                     |
| 2                    | trigger input 2 | ~2 volts                  | Logic Transition at |
| 3                    | NA              | (preferred for            | ~10 volts           |
| 4                    | NA              | differential signals)     |                     |

## SW500: Normal/Safe Boot Mode & GEN2 Slot Workaround

The X64 Xcelera-HS PX8 powers up either in its normal state or a 'Safe Boot' mode required to load firmware under certain conditions. See the notes for SW500-1 following the table for details.

**Note:** On **Rev AO** of the board, this function is controlled by jumpers on J5. See below for more information.

| SW500<br>Switch Number | Assigned to             | OFF Position<br>(default) | ON Position |
|------------------------|-------------------------|---------------------------|-------------|
| 1                      | Boot Mode               | Normal                    | Safe        |
| 2                      | GEN2 Slot<br>Workaround | Disable                   | Active      |
| 3                      | reserved                |                           |             |
| 4                      | reserved                |                           |             |

Table 28: SW500 Switches

#### SW500-1 Boot Mode Details

- Normal Mode: Board powers up in the normal operating mode.
- **Safe Mode**: With the computer off, move the switch to the ON position. This mode is required if any problems occurred while updating firmware. With the switch in the ON position, power on the computer and update the firmware again. When the update is complete, power off the computer and move the switch to the OFF position. Power on the computer once again for normal operation (see the Recovering from a Firmware Update Error section).

#### SW500-2 GEN2 Slot Workaround Details

- Normal Mode: Normal operation of the Xcelera-HS PX8.
- **GEN2 Slot Workaround**: In computers with GEN2 slots and the Intel 5400 chipset. There have been circumstances where the board is not detected properly. This issue is identified by the status LED 1 that keeps on flashing red at boot time. In one example, with a Dell T5400 or T7400 computer, the following message was displayed by the computer BIOS: "Alert! Error initializing PCI Express slot".
  - Therefore when using such a computer, with the Xcelera SW500-2 in the ON position, the computer should boot normally and the Xcelera should function. If this is not the case, please contact Technical Support with details about your computer.

#### For Revision AO Boards Only: J5 Normal/Safe Boot Mode & GEN2 Slot Workaround

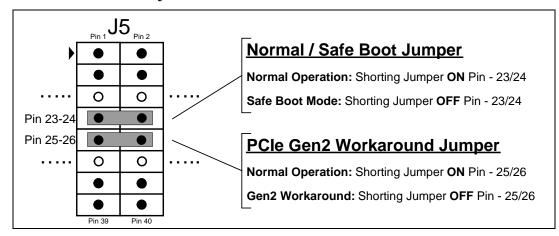



Figure 26: J5 on A0 Boards – Jumpers for Safe Boot and Gen2 Slots

## J2 HS-Link Input / J3 HS-Link Output Connectors

For the HS-Link connectors, pin-outs are not provided. Camera connections should be made with manufactured cables such as recommended by Teledyne DALSA (see Product Part Numbers).

## **HS-Link Camera Control Signal Overview**

There are four general-purpose camera controls available.

- Camera Control 1 (CC1)
- Camera Control 2 (CC2)
- Camera Control 3 (CC3)
- Camera Control 4 (CC4)

Each camera manufacture is free to define the signals input on any one or all four control signals. These control signals are used either as camera control pulses or as a static logic state. Control signals not required by the camera are simply assigned as not used. Refer to your camera's user manual for information on what control signals are required.



**Note:** The X64 Xcelera-HS PX8 pulse controller has a minimum resolution of 100ns for line trigger signals (applies to linescan cameras), and resolution of  $1\mu$ s for all other signal. When configuring the Camera Link control signals such as exposure control, etc. use values in increments of  $1 \mu$ s.

The X64 Xcelera-HS PX8 can assign any camera control signal to the appropriate HS-Link control. The following screen shot shows the Sapera CamExpert dialog where Camera Link controls are assigned.

| CamExpert - [Untitled]                |                      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|---------------------------------------|----------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Eile View Pre-Processing Ad           | dvanced CameraLink P | ort Help                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       |                      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Device Selector                       |                      | ×                         | Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                       |                      | 2K40-00-R (HS Link Mone 🔻 | Grab         Snap         The later         The late                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Configuration: Select a camera        | a file (Optional)    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Parameters                            |                      | ×                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Category                              | Parameter            | Value                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Basic Timing                          | Line Sync Sour       | ce Internal Line Trigger  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Advanced Control                      | Internal Line T      | rigg 5000                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| External Trigger                      | Camera Line Ti       | rigg 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       | Camera Line Tr       | igg 16777215              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Image Buffer and ROI                  | Camera Contro        | alm None                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       | Line Integratio      | n M None                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       | Line Trigger Me      | etho, None                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       | Camera Contro        | d D Not Supported         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       | Strobe Method        | Se None                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       | CC1                  | Pulse #1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       | CC2                  | Not Used                  | Martin Carlos and Carl |  |
|                                       | ĆC3                  | Not Used                  | ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                       | CC4                  | Not Used                  | Output Messages ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                       |                      |                           | Snap button was clicked.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| CC1<br>General-purpose camera control |                      |                           | Snap button was clicked<br>[13:48:17] (CeelarH-E, 2-X8_1) Line Sync Source value was changed from "None" to "Internal Line Trigger"<br>Snap button was clicked.<br>Snap button was clicked.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                       |                      |                           | Dutput Messages Camera Lini: Senal Command                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                       |                      |                           | Video status: IPixel Clock Present (Line Valid Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |

Figure 27: CamExpert - Camera Link Controls

# **Status LEDs & LED D2 Functional Description**

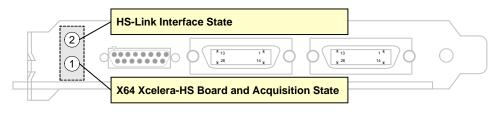



Figure 28: Status LEDs location

Status LEDs 1 & 2 are located on the end bracket. LED D2 is located on the board component side and visible with the computer case open (see board layout drawings).

## **Status LED 1 Description**

LED 1 indicates the X64 Xcelera-HS board and acquisition state, but not the state of the HS-Link itself which is treated as a separate logical block. Refer to the block diagram (see the Block Diagram).

Table 29: LED 1 Status

| Color  | State                | Description                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Red    | Flashing             | Can occur at boot time, when there is no camera connected to the<br>HS-Link input (J2). This indicates that the board PCIe interface was<br>not trained properly by the computer (terminology defined by the<br>PCI Express specification). The board is not detected by the<br>computer in this condition. If this occurs, try installing the board in a<br>different computer or contact Teledyne DALSA technical support. |
| Green  | Steady               | No line valid signal detected.                                                                                                                                                                                                                                                                                                                                                                                               |
| Green  | Slow Flashing ~2 Hz  | Line valid signal detected.                                                                                                                                                                                                                                                                                                                                                                                                  |
| Green  | Fast Flashing ~16 Hz | Acquisition in progress.                                                                                                                                                                                                                                                                                                                                                                                                     |
| Yellow | Steady               | Board has booted in Safe Mode.                                                                                                                                                                                                                                                                                                                                                                                               |

## **Status LED 2 Description**

Table 30: LED 2 Status

| Color     | State    | Description                                                            |
|-----------|----------|------------------------------------------------------------------------|
| Red/Green | Flashing | Looking for Link                                                       |
| Green     | Steady   | Link Up                                                                |
| Orange    | Steady   | Link Up but invalid and/or incompatible HS-Link configuration detected |

Note: Driver must be installed and running for LED 2 to be in a valid state.

## **LED D2 Boot-up Status Description**

**Note:** The LED D2 is mounted near the top edge of the board and is visible only with the computer cover off.

Table 31: D2 Boot-up Status LED

| Color/State           | Description                                                             |
|-----------------------|-------------------------------------------------------------------------|
| RED Solid             | FPGA Firmware not Loaded (load error)                                   |
| GREEN Solid           | Normal FPGA Firmware Loaded                                             |
| BLUE Solid            | Safe mode FPGA Firmware Loaded                                          |
| Flashing Green / Blue | Production FPGA Firmware Loaded                                         |
| Flashing Blue         | PCIe Training issue (board is not visible in the PCI Diagnostic output) |

## **Connecting External Signals to the X64 Xcelera-HS PX8**

Two connectors are provided for external signals. J1 (see below) is located on the board bracket and provides a subset of the available signals (one trigger input, one general input, one strobe output, and shaft encoder inputs), while the internal connector J4 (J4: External Signals Connector) provides all the I/O signals available with the X64 Xcelera-HS PX8. The following two sections define the pin-outs for these connectors, followed with the electrical specifications.

## J1: CMD15 Male External Signals Connector

This connector provides the commonly used external signals, such as external trigger and strobe output directly from the board bracket.

The following table defines the signals and the connector pinout. Also included is the wiring color code for the blunt-end cable available from Teledyne DALSA, (cable assembly **OR-X8CC-IO15P**, see Product Part Numbers). **Important**: These signals are also available on J4. Connect to one or the other but never both when using the same signal.

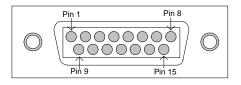



Figure 29: CMD15 Connector View

\* Part number of the connector used on the board is MOLEX 0836129022

Table 32: CMD15 Connector Detail and Cable OR-X8CC-IO15P wire color

| Cable Wire<br>color | Description                                                           | Pin | Pin   | Description                                           | Cable Wire<br>color |
|---------------------|-----------------------------------------------------------------------|-----|-------|-------------------------------------------------------|---------------------|
| BLK                 | External Trigger Input 1 +<br>(all Opto-coupled)<br>see <u>note 3</u> | 1   | 9     | External Trigger Input 1 -                            | GRY                 |
| BRN                 | Opto-coupled Shaft Encoder<br>Phase A +<br>see <u>note 4</u>          | 2   | 10    | Opto-coupled Shaft Encoder<br>Phase A -               | WHT                 |
| RED                 | Opto-coupled Shaft Encoder<br>Phase B +                               | 3   | 11    | Opto-coupled Shaft Encoder<br>Phase B -               | W/BLK               |
| ORG                 | General Output 1 +<br>(all Opto-coupled)<br>see <u>note 2</u>         | 4   | 12    | General Output 1 -                                    | W/BRN               |
| YEL                 | Ground                                                                | 5   | 13    | Strobe Output 1<br>see <u>note 5</u>                  | W/RED               |
| GRN                 | Ground                                                                | 6   | 14    | Power Output 5 Volts,<br>1.5A max - see <u>note 6</u> | W/ORG               |
| BLU                 | Ground                                                                | 7   | 15    | Power Output 12 Volts,<br>1.5A max -see note 6        | W/YEL               |
| VIO                 | Ground                                                                | 8   | Shell | Shielding connected to ground                         | shield              |

## J4: External Signals Connector

The following table defines the signals and the connector pinout. A subset of these signals are also available on J1. Connect to one or the other but never both when the signal is the same.

#### J4 Pin Header Numbering Detail

| 2 | 4 | <br>38 | 40 |
|---|---|--------|----|
| 1 | 3 | <br>37 | 39 |

#### **J4 Signal Descriptions**

Table 33: J4 Pin Header Pins Detail

| Description                          | Pin # | Pin # | Description                                                           |
|--------------------------------------|-------|-------|-----------------------------------------------------------------------|
| Ground                               | 1     | 2     | Ground                                                                |
| General Input 1 +                    | 3     | 4     | General Input 1 -<br>(all Opto-coupled — see <u>note 1</u> )          |
| General Input 2 +                    | 5     | 6     | General Input 2 -                                                     |
| General Input 3 +                    | 7     | 8     | General Input 3 -                                                     |
| General Input 4 +                    | 9     | 10    | General Input 4 -                                                     |
| General Output 1 +                   | 11    | 12    | General Output 1 -<br>(all Opto-coupled — see <u>note 2</u> )         |
| General Output 2 +                   | 13    | 14    | General Output 2 -                                                    |
| General Output 3 +                   | 15    | 16    | General Output 3 -                                                    |
| General Output 4 +                   | 17    | 18    | General Output 4 -                                                    |
| External Trigger Input 1 +           | 19    | 20    | External Trigger Input 1 -<br>(all Opto-coupled — see <u>note 3</u> ) |
| External Trigger Input 2 +           | 21    | 22    | External Trigger Input 2 -                                            |
| Opto-coupled Shaft Encoder Phase A + | 23    | 24    | Opto-coupled Shaft Encoder Phase A - (see <u>note 4</u> )             |
| Opto-coupled Shaft Encoder Phase B + | 25    | 26    | Opto-coupled Shaft Encoder Phase B -                                  |
| Ground                               | 27    | 28    | Strobe Output 1 (see <u>note 5</u> )                                  |
| Ground                               | 29    | 30    | Strobe Output 2                                                       |
| Ground                               | 31    | 32    | Ground                                                                |
| Power Output 5 Volts, 1.5A max       | 33    | 34    | Power Output 5 Volts, 1.5A max<br>(see <u>note 6</u> )                |
| Power Output 12 Volts, 1.5A max      | 35    | 36    | Power Output 12 Volts, 1.5A max (see <u>note 6</u> )                  |
| Ground                               | 37    | 38    | Ground                                                                |
| Ground                               | 39    | 40    | Ground                                                                |

## **I/O Electrical Specifications**

The electrical and timing specifications for all I/O signals are defined below. In general these specifications are common across many Xcelera products but Teledyne DALSA reserves the right to make changes without notice (assuming the change is backward compatible with previous Xcelera installations).

#### **Note 1: General Inputs Specifications**

Each of the four General Inputs are opto-coupled and able to connect to differential signals (RS-422) or single ended source signals. These inputs generate individual interrupts and are read by the Sapera application. The following figure is typical for each Genera Input.

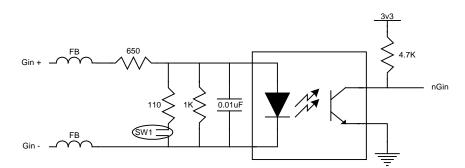



Figure 30: General Inputs Electrical Diagram

#### **Input Details:**

- For single ended signals, the Gin- pin is connected to ground. The switch point is  $\sim 10V$  by default and can be change to  $\sim 2V$  with **SW1**.
- Each input has a ferrite bead plus a 650 ohm series resistor on the opto-coupler anode.
- The 1K resistor and 0.01uF capacitor provide high frequency noise filtering.
- Maximum input voltage is 26V.
- Maximum input signal frequency is 25 KHz.

#### **Note 2: General Outputs Specifications**

Each of the four General Outputs are opto-coupled. Each output is an isolated open-collector NPN transistor switch. The following figure is typical for each General Output.

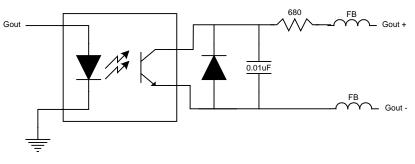



Figure 31: General Outputs Electrical Diagram

#### **Output Details:**

- Each output has ferrite beads plus a 680 ohm series resistor on the cathode (+) connection.
- The diode and capacitor provide reverse voltage protection and noise filter
- Maximum output device differential voltage is 25V.
- Maximum output device sink current is 35mA with 25V output differential.
- Maximum reverse voltage is 25V.
- Maximum output switching frequency is limited by driver and register access on the PCIe bus.

#### Note 3: External Trigger Input Specifications

The two Trigger Inputs are opto-coupled and compatible to differential signals (RS-422) or single ended source signals. The following figure is typical for each External Trigger Input.

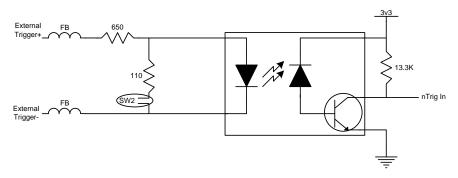



Figure 32: External Trigger Inputs Electrical Diagram

- For single ended signals, the External Trigger pin is connected to ground. The switch point is ~2V by default to support TTL 5V signals and can be changed to switch at ~10V with SW2 to support 24V industry standard signals.
- For RS-422 differential signals, switch point must be selected to ~2V.
- Maximum external signal input voltage is 26V, irrelevant of the selected switch point.
- The incoming trigger pulse is "debounced" to ensure that no voltage glitch is detected as a valid trigger pulse. This debounce circuit time constant can be programmed from 1µs to 255µs. Any pulse smaller than the programmed value is blocked and therefore not seen by the acquisition circuitry. If no debouncing value is specified (value of 0µs), the minimum value of 1µs will be used.
- Each input has a ferrite bead plus a 650 ohm series resistor on the opto-coupler anode.
- Maximum input signal frequency is 100 KHz.
- Opto-coupler response time is  $0.5\mu$ s for a rising signal.
- Opto-coupler response time is  $4.2\mu$ s for a falling signal.
- Refer to Sapera parameters: CORACQ\_PRM\_EXT\_TRIGGER\_SOURCE CORACQ\_PRM\_EXT\_TRIGGER\_ENABLE CORACQ\_PRM\_EXT\_TRIGGER\_LEVEL CORACQ\_PRM\_EXT\_FRAME\_TRIGGER\_LEVEL CORACQ\_PRM\_EXT\_TRIGGER\_DETECTION CORACQ\_PRM\_EXT\_TRIGGER\_DURATION
- See also \*.cvi file entries: External Trigger Level, External Frame Trigger Level, External Trigger Enable, External Trigger Detection.
- External Trigger Input 2 used for two pulse external trigger with variable frame length line scan acquisition.



Figure 33: External Trigger Input Validation & Delay

Table 34: External Trigger Timing Specifications

| Let          | t(et) = time of external trigger in $\mu$ s               |  |  |
|--------------|-----------------------------------------------------------|--|--|
|              | $t(vt) = time of validated trigger in \mu s$              |  |  |
|              | t(oc) = time opto-coupler takes to change state           |  |  |
|              | $t(d) = debouncing duration from 1 to 255 \mu s$          |  |  |
|              |                                                           |  |  |
| trigger high | For an active high external trigger, $t(oc) = 0.5\mu s$ : |  |  |
|              | $t(vt) = t(et) + 0.5\mu s + t(d)$                         |  |  |
|              |                                                           |  |  |
| trigger low  | For an active low external trigger, $t(oc) = 4.2\mu s$ :  |  |  |
|              | $t(vt) = t(et) + 4.2\mu s + t(d)$                         |  |  |



**Note:** Teledyne DALSA recommends using an active high external trigger to minimize the time it takes for the opto-coupler to change state. Specifically, the opto-coupler response time is  $0.5\mu$ s for active high compared to  $4.2\mu$ s for active low.

If the duration of the external trigger is > t(oc) + t(d), then a valid acquisition trigger is detected. Therefore, the external pulse with active high polarity must be at least  $1.5\mu s$  (if debounce time is set to 1) in order to be acknowledged. Any pulse larger than  $5.2\mu s$  is always considered valid.

It is possible to emulate an external trigger using the software trigger which is generated by a function call from an application.

#### Note 4:Opto-Coupled Shaft Encoder Input Specifications

Dual Quadrature Shaft Encoder Inputs (phase A and phase B) are opto-coupled and able to connect to differential signals (RS-422) or single ended TTL 5V source signals. The following figure is typical for each input.

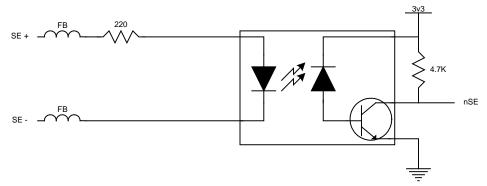



Figure 34: Opto-Coupled Shaft Encoder Input Electrical Diagram

- For single ended TTL 5V signals, the SE- pin is connected to ground. The switch point is ~2V.
- Maximum input voltage that can be applied is 6V.
- Each input has a ferrite bead plus a 220 ohm series resistor on the opto-coupler anode.

- Maximum input signal frequency is 200 KHz.
- Opto-coupler response time is  $0.8\mu s$  for a rising signal.
- Opto-coupler response time is 1.7µs for a falling signal.
- See the Line Trigger Source Selection for Linescan Applications section for more information.
- Refer to Sapera parameters: CORACQ\_PRM\_SHAFT\_ENCODER\_ENABLE CORACQ\_PRM\_SHAFT\_ENCODER\_DROP or refer to CORACQ\_PRM\_EXT\_LINE\_TRIGGER\_ENABLE CORACQ\_PRM\_EXT\_LINE\_TRIGGER\_DETECTION CORACQ\_PRM\_EXT\_LINE\_TRIGGER\_LEVEL (fixed at RS-422) CORACQ\_PRM\_EXT\_LINE\_TRIGGER\_SOURCE CORACQ\_PRM\_SHAFT\_ENCODER\_SOURCE
- See also \*.cvi file entries: Shaft Encoder Enable, Shaft Encoder Pulse Drop or see External Line Trigger Enable, External Line Trigger Detection, External Line Trigger Level, External Line Trigger Source.

#### **Note 5: Strobe Output Specifications**

One TTL Strobe output is provided. The following figure is typical for the strobe out.

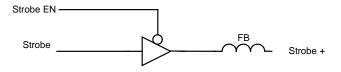


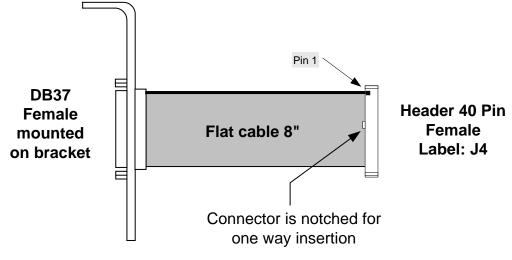

Figure 35: Strobe Output Electrical Diagram

- Each strobe output is a tri-state driver, enabled by software.
- Each strobe output is 5V TTL level.
- Each output has a ferrite bead.
- Maximum source current is 32mA typical.
- Maximum sink current is 32mA typical.
- Output switching is < 4.2ns typical.
- Refer to Sapera Strobe Methods parameters: CORACQ\_PRM\_STROBE\_ENABLE CORACQ\_PRM\_STROBE\_POLARITY CORACQ\_PRM\_STROBE\_LEVEL CORACQ\_PRM\_STROBE\_METHOD CORACQ\_PRM\_STROBE\_DELAY CORACQ\_PRM\_STROBE\_DURATION
- See also \*.cvi file entries: Strobe Enable, Strobe Polarity, Strobe Level, Strobe Method, Strobe Delay, Strobe Duration.

#### Note 6: DC Power Details for J7



**Warning**: Never remove or install any hardware component with the computer power on. Never connect a floppy drive power cable to J7 when the computer is powered on.


- Connect the PC floppy drive power connector to J7 so as to supply DC power to the External Signal connectors. Both 5Vdc and 12Vdc are available on J1 or on the DB37 External Signals Bracket Assembly.
- Both the 5Volt and 12Volt power pins have a 1.5 amp re-settable fuse on the board. If the fuse is tripped, turn off the host computer power. When the computer is turned on again, the fuse is automatically reset.

# **External Signals Cabling Options for J4**

Two I/O connector bracket options are available for the J4 connector header on the X64 Xcelera-HS PX8 board. The "Type 1" cable assembly allows connection to all available I/O signals. The "Type 2" cable assembly provides a subset of the signals that uses a different connector compared to J1 external signals connector.

## **External Signals Connector Bracket Assembly (Type 1)**

The External Signals bracket (OC-X4CC-IOCAB) provides a simple way to bring out the signals from the External Signals Connector J4 to a bracket mounted DB37. Install the bracket assembly into an adjacent PC expansion slot and connect the free cable end to the board's J4 header. When connecting to J4, make sure that the cable pin 1 goes to J4 pin 1 (see the layout drawing X64 Xcelera-HS PX8 revision A1 Layout Drawing).



#### **External Signals Connector Bracket Assembly (Type 1) Drawing**

Figure 36: DB37 Output Cable

#### **External Signals Connector Bracket Assembly (Type 1) Pinout**

The following table defines the signal pin out on the DB37 connector. Refer to the table J4: External Signals Connector for signal descriptions and notes.

Table 35: DB37 Cable Connector Details

| DB37 Pin Number | Signal                     | J4 Pin Number |
|-----------------|----------------------------|---------------|
| 1               | Ground                     | 1             |
| 20              | Ground                     | 2             |
| 2               | General Input 1 +          | 3             |
| 21              | General Input 1 -          | 4             |
| 3               | General Input 2 +          | 5             |
| 22              | General Input 2 -          | 6             |
| 4               | General Input 3 +          | 7             |
| 23              | General Input 3 -          | 8             |
| 5               | General Input 4 +          | 9             |
| 24              | General Input 4 -          | 10            |
| 6               | General Output 1 +         | 11            |
| 25              | General Output 1 -         | 12            |
| 7               | General Output 2 +         | 13            |
| 26              | General Output 2 -         | 14            |
| 8               | General Output 3 +         | 15            |
| 27              | General Output 3 -         | 16            |
| 9               | General Output 4 +         | 17            |
| 28              | General Output 4 -         | 18            |
| 10              | External Trigger Input 1 + | 19            |
| 29              | External Trigger Input 1 - | 20            |
| 11              | External Trigger Input 2 + | 21            |
| 30              | External Trigger Input 2 - | 22            |
| 12              | Shaft Encoder Phase A +    | 23            |
| 31              | Shaft Encoder Phase A -    | 24            |
| 13              | Shaft Encoder Phase B +    | 25            |
| 32              | Shaft Encoder Phase B -    | 26            |
| 14              | Ground                     | 27            |
| 33              | Strobe Output 1            | 28            |
| 15              | Ground                     | 29            |
| 34              | Strobe Output 2            | 30            |
| 16              | Ground                     | 31            |
| 35              | Ground                     | 32            |
| 17              | +5V                        | 33            |
| 36              | +5V                        | 34            |
| 18              | +12V                       | 35            |
| 37              | +12V                       | 36            |
| 19              | Ground                     | 37            |
| _               | _                          | 38, 39, 40    |

## **External Signals Connector Bracket Assembly (Type 2)**

The External Signals bracket (OR-X4CC-0TIO2) provides a simple way to bring out the signals from the External Signals Connector J4 to a bracket mounted DB25. External cables designed for the Teledyne DALSA X64 Xcelera-HS PX8 can be connected directly.

Install the bracket assembly into an adjacent PC expansion slot and connect the free cable end to the board's J4 header. When connecting to J4, make sure that the cable pin 1 goes to J4 pin 1 (see the layout drawing X64 Xcelera-HS PX8 revision A1 Layout Drawing).

#### **External Signals Connector Bracket Assembly (Type 2) Drawing**

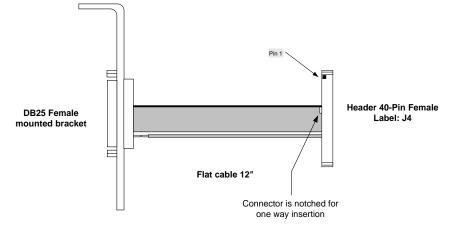



Figure 37: DB25 Output Cable

#### **External Signals Connector Bracket Assembly (Type 2) Pinout**

The following table defines the signal pin out on the DB25 connector. Refer to the table J4: External Signals Connector for signal descriptions.

| DB25 Pin Number | Signal                     | J4 Pin Number |
|-----------------|----------------------------|---------------|
| 6               | External Trigger Input 1 + | 19            |
| 19              | External Trigger Input 1 - | 20            |
| 7               | External Trigger Input 2 + | 21            |
| 20              | External Trigger Input 2 - | 22            |
| 8               | Shaft Encoder Phase A +    | 23            |
| 21              | Shaft Encoder Phase A -    | 24            |
| 9               | Shaft Encoder Phase B +    | 25            |
| 22              | Shaft Encoder Phase B -    | 26            |
|                 |                            |               |
| 11              | Strobe Output 1            | 28            |
| 24              | Ground                     | 29            |
| 10              | Strobe Output 2            | 30            |
| 14              | Ground                     | 31            |
| 15              | Ground                     | 38            |
| 16              | Ground                     | 39            |
| 25              | Ground                     | 40            |

Table 36: DB25 Cable Connector Details

# J11: RS-422 Shaft Encoder Input

J11 provides an alternative method to connect shaft encoder signals to the Xcelera-HS PX8 board, providing a higher maximum input signal frequency, but without the signal isolation provided by the opto-coupled shaft encoder inputs (on J1 or J4). The user or imaging application enables, via board parameters, which shaft encoder inputs are used for acquisition timing. For more information see the Shaft Encoder Interface & Timing section.

#### J11 Pin Header Numbering Detail

| 2 | 4 | 6 | 8 | 10 |
|---|---|---|---|----|
| 1 | 3 | 5 | 7 | 9  |

#### **J11 Signal Descriptions**

Table 37: J11-Connector Details

| Description             | Pin # | Pin # | Description             |
|-------------------------|-------|-------|-------------------------|
| Ground                  | 1     | 2     | Ground                  |
| Shaft Encoder Phase A + | 3     | 4     | Shaft Encoder Phase A - |
| Ground                  | 5     | 6     | Ground                  |
| Shaft Encoder Phase B + | 7     | 8     | Shaft Encoder Phase B - |
| Ground                  | 9     | 10    | Ground                  |

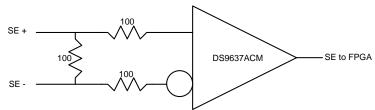



Figure 38: RS-422 Shaft Encoder Input Electrical Diagram

- For single ended TTL signals, connect a bias voltage to the RS-422 (-) input to ensure correct detection of the logic state of the TTL signal connected to the RS-422 (+) input. See the following section for connection methods.
- Maximum input voltage is 7V.
- All inputs have a 100-ohm series resistor.
- Maximum input signal frequency is **5 MHz**.
- Propagation Delay Time Low to High = 15ns Typical, 25ns Max.
- Propagation Delay Time **High to Low** = 13ns Typical, 25ns Max.
- See the Shaft Encoder Interface & Timing section for more information.
- Refer to Sapera parameters: CORACQ\_PRM\_SHAFT\_ENCODER\_ENABLE CORACQ\_PRM\_SHAFT\_ENCODER\_DROP or refer to CORACQ\_PRM\_EXT\_LINE\_TRIGGER\_ENABLE CORACQ\_PRM\_EXT\_LINE\_TRIGGER\_DETECTION CORACQ\_PRM\_EXT\_LINE\_TRIGGER\_LEVEL (fixed at RS-422) CORACQ\_PRM\_EXT\_LINE\_TRIGGER\_SOURCE CORACQ\_PRM\_EXT\_SHAFT\_ENCODER\_SOURCE
- See also \*.cvi file entries: Shaft Encoder Enable, Shaft Encoder Pulse Drop, Shaft Encoder Source or see External Line Trigger Enable, External Line Trigger Detection, External Line Trigger Level, External Line Trigger Source.

#### TTL Shaft Encoder to RS-422 Input Block Diagram

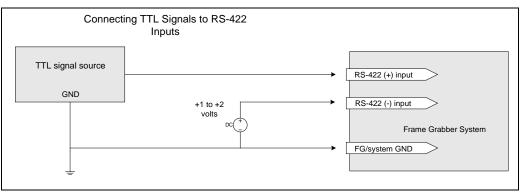



Figure 39: Connecting TTL to RS-422 Shaft Encoder Inputs

- RS-422 (-) input is biased to a DC voltage from +1 to +2 volts.
- This guarantees that the TTL signal connected to the RS-422 (+) input will be detected as a logic high or low relative to the (-) input.
- The TTL shaft encoder ground, the bias voltage ground, and the Xcelera-HS PX8 computer system ground must be connected together.

**RS-422 (-) Input Bias Source Generation** 

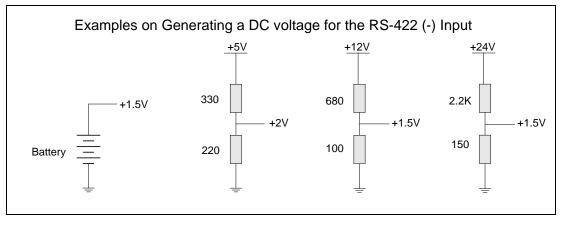



Figure 40: Generating a DC Bias Voltage

- DC voltage for the RS-422 (-) input can be generated by a resister voltage divider.
- Use a single battery cell if this is more suitable to your system.
- A DC voltage (either +5 or +12) is available on External Signals Connector J1 and J4.

## **J9: Board Sync**

Interconnects multiple X64 Xcelera boards to synchronize acquisitions to one trigger or event. The trigger source can be either an external signal or internal software trigger. The board receiving the trigger is the Master board. while the boards receiving the control signal from the Master board are Slaves.

- Hardware Connection: Interconnect two, three, or four X64 Xcelera boards via their J9 connector. The 4 pin cable is wired one to one i.e. no crossed wires. The cable must be as short as possible and the boards must be in the same system.
- Master Board Software Setup: Choose one X64 Xcelera as master. The Sapera parameter CORACQ\_PRM\_EXT\_TRIGGER\_SOURCE is set to either *Mode 1–Output to Board Sync* or *Mode 2–Control pulse to Board Sync*. See Sapera documentation for more details.
- Slave Board Software Setup: The Sapera parameter CORACQ\_PRM\_EXT\_TRIGGER\_SOURCE is set to *From Board Sync*.
- Test Setup: The control application starts the acquisition on all slave boards. The acquisition
  process is now waiting for the control signal from the master board. The master board
  acquisition is triggered and the acquisition start signal is sent to each slave board (with ~0.8µs
  delay max).

Contact Technical Support for additional information.

# Connecting Multiple X64 Xcelera-HS PX8 Boards to one Camera

Multiple X64 Xcelera-HS PX8 boards can simultaneously process image data from one HS Link camera. The X64 Xcelera-HS PX8 board provides an HS-Link output which feeds the acquisition to a second board, which can then feed a third, etc.

#### Feature highlights are:

- Split image processing across multiple X64 Xcelera-HS PX8 boards.
- Up to 6 boards can be chained to one camera.
- X64 Xcelera-HS PX8 boards can be in one computer or multiple computers.
- The HS-Link output is the whole frame acquired each X64 Xcelera-HS PX8 board in the chain receives a complete image.
- Each X64 Xcelera-HS PX8 board can perform a task or process either on the whole frame or a selected ROI, without effect on the camera image sent to other boards in the chain.

#### **Cabling:**

Physical connection between X64 Xcelera-HS PX8 boards is via HS-Link cables (CX4 connectors). Simply connect the camera to the first X64 Xcelera-HS PX8 board and then connect the HS-Link output to the HS-Link camera input of the next board. Repeat for any other X64 Xcelera-HS PX8 boards used. See the X64 Xcelera-HS PX8 End Bracket Detail section.



**Warning**: Attenuation of the signal on the cable between the camera and the frame grabber must not exceed 15dB at 3.125 GHz. Attenuation is dependent on cable length, gauge and quality.

#### **Application setup:**

- The camera is connected to the X64 Xcelera-HS PX8 board defined as "Master".
- Only the Master board controls the camera.
- Each X64 Xcelera-HS PX8 board receiving daisy chained video is defined as a "Slave".
- Slave boards do not command the camera..
- Camera file (CCF) parameters define Master and Slave boards.
- For a Slave board, the CCF file must include a 'Custom Parameters' section with the following parameter defined, where 'n' is replaced by the slave order number in the system (value 1 .. max slave): [Custom Parameters]

Parameter\_0=0x107, 0xc64, n, "Slave n"

• Triggered acquisitions can require use of the board's multi-board sync capability. See the J9: Board Sync section.



# **Contact Information**

# **Sales Information**

Visit our web site: http://www.teledynedalsa.com/imaging/ mailto:info@teledynedalsa.com Email: **Canadian Sales** Teledyne DALSA — Head office Teledyne DALSA — Montreal office 605 McMurray Road 880 McCaffrey, Saint-Laurent, QC, Waterloo, Ontario, Canada, N2V 2E9 Canada, H4T 2C7 Tel: 519 886 6000 Tel: (514) 333-1301 Fax: 519 886 8023 (514) 333-1388 Fax: **USA Sales European Sales** Teledyne DALSA — Billerica office Teledyne DALSA GMBH 700 Technology Park Drive Felix-Wankel-Str. 1 Billerica, Ma. 01821 82152 Krailling, Germany Tel: +49 - 89 89 - 54 57 3-80 Tel: (978) 670-2000 (978) 670-2010 Fax: +49 - 89 89 - 54 57 3-46 Fax: **Asian Sales** Teledyne DALSA Asia Pacific Shanghai Industrial Investment Building Ikebukuro East 13F Room G, 20F, 18 North Cao Xi Road, 3-4-3 Higashi Ikebukuro, Shanghai, China 200030 Toshima-ku, Tokyo, Japan Tel: +86-21-64279081 Tel: +81 3 5960 6353 Fax: +86-21-64699430 +81 3 5960 6354 Fax:

# **Technical Support**

# Find application notes, product information, and register software on our support web site, along with submitting technical support questions.

| Technical support form via our web page:                                                           |                                       |
|----------------------------------------------------------------------------------------------------|---------------------------------------|
| Support requests for imaging product<br>installations<br>Support requests for imaging applications | http://www.teledynedalsa.com/imaging/ |
| Camera support information                                                                         | <u></u>                               |
| Product literature and driver updates                                                              |                                       |
| Register software                                                                                  |                                       |

